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Introduction

The origins of knot theory, which is the main topic of this thesis, are probably to be found in the
work of C. F. Gauss 1833 in electrodynamics. There, he defined the number of ‘intertwinings’ of two
trajectories and showed how this number, that we call today the linking number, can be computed by
a double integral. Several decades later two physicists, W. Thomson (lord Kelvin) and P. G. Tait, set
the foundations of knot theory, see [Sil06]. The former proposed a model of matter in which atoms are
represented by knot-shaped vortices, the type of the knot determining the atom’s physico-chemical
properties. To understand matter, it was therefore necessary to classify knots. This initiated the
work undertaken by Tait. He provided the first attempt of a classification of knots with less than ten
crossings. It was H. Poincaré at the end of the 19th century, who provided, the formal framework for
the study of knots, with the development of algebraic topology [Poi95].

Knot theory has the advantage of being inspired by real-life objects. It is the study of knots as
they are commonly understood: a piece of string tied in space. The two ends of the string are glued
together, so that the resulting knot cannot in general be trivially untied. We then seek to understand
the topology of the knot without worrying about its physical characteristics: length, strength, nature
of the string, etc. More rigorously, a knot is defined as a smooth embedding of the circle in the three-
dimensional ball. The simplest knot of all, pictured in Figure 1, is just the unknotted circle, which
we call the unknot or the trivial knot. The next simplest knot is called the trefoil knot, illustrated in
Figure 2.

Figure 1: The unknot. Figure 2: The trefoil knot.

We typically consider and study knots up to several kind of deformations (see below), for which
two questions naturally arise. If we give ourselves a knot, can we untie it? If we give ourselves two
knots, are they equivalent up to deformation? To answer these questions, we use the notion of knot
invariants. An invariant is a quantity (number, matrix, polynomial, etc.) associated to each knot,
such that if two knots are equivalent, the associated quantities are the same. In practice, it is the
contrapositive of this proposition that is used, i.e., if two knots do not have the same invariant, then
these knots are not equivalent up to the considered type of deformation.
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The first and main type of deformation considered by topologists is the notion of isotopy. We
say that two knots are isotopic if they are related by an ambient isotopy of the three-ball. This
transformation corresponds to manipulations that do not involve cutting or passing the string through
itself. Figure 3 gives an illustration of an ambient isotopy of the unknot. To date, no isotopy knot

↔        
              
              

              

              
              

              
              ↔ ↔

Figure 3: Ambient isotopy untying a tangled unknot.

invariant is really satisfactory. They are generally incomplete in the sense that some non-isotopic
knots have the same invariant values. This is definitely the case for well-known invariants such
as the crossing number, the unknotting number, the genus, the Jones polynomial or the Alexander
polynomial. For some others, whether or not they are complete remains an open question. It is for
instance the case for the family of finite-type invariants. Finally, the fundamental group of the knot
complement, when endowed with the peripheral structure, forms a complete invariant [Wal68]; but
this invariant is difficult to handle, and determining whether two groups are isomorphic is no easy
matter either.

Another equivalence relation that later interested knot theorists is concordance, initially defined
in [FM66]. Two knots are concordant if they co-bound a cylinder smoothly and properly embedded
in B ˆ r0,1s, with B the three-dimensional ball, each knot lying respectively in B ˆ t0u and B ˆ t1u.
Isotopy implies concordance, it is therefore a more permissive notion, and a priori simpler to study. To
illustrate our point, let us present the connected sum operation on knots (more precisely, we consider
here oriented knots). Given two knots, we define their connected sum by removing a small arc from
each knot and then connecting the four endpoints two by two as in Figure 4. We stress that the

Figure 4: The connected sum of two trefoil knots.

connected sum endows the set of knots up to concordance with an abelian group structure, whereas
up to isotopy we only obtain an abelian monoid. However, concordance is still very hard to study,
and is still poorly understood. In fact, we do not even know how to determine whether a knot is
trivial up to concordance, a property that qualifies it as slice knot. This question is the subject of R.
H. Fox’s famous ribbon/slice conjecture [Fox62]. This conjecture arose from the observation that any
ribbon knot, i.e., a knot bounding an immersed disk that admits only ribbon singularities, is always
concordant to the trivial knot.

Finally, let us consider link-homotopy, another type of deformation central to our study. It is
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a more permissive equivalence relation than the previous two, in the sense that concordance (and
therefore isotopy) implies link-homotopy. Link-homotopy was first studied in 1954 by J. W. Milnor in
[Mil54]. It is an equivalence relation on links (embedding of several circles, called components), that
allows continuous deformations during which two distinct components remain disjoint at all times,
but each component may self-intersect. We give in Figure 5 an example of a link-homotopy; the first
deformation in the figure is a self-crossing change, a local move that generates link-homotopy. Any

↔ ∼ ∼

Figure 5: The Whitehead link is trivial up to link-homotopy.

knot is link-homotopic to the trivial one, but for links with more than one component this equivalence
relation turns out to be quite rich and intricate. Since J. W. Milnor’s seminal work, link-homotopy has
been the subject of numerous works in knot theory see e.g., [Gol74, Lev88, Orr89, HL90], but also more
generally in the study of co-dimension 2 embeddings (and in particular knotted surfaces in dimension
4) [MR85, BT99, AMW17] and link-maps (self-immersed spheres) [FR86, Kir88, Kos90, ST19]. In
this manuscript, we are interested in the study of link-homotopy for various objects of low-dimensional
topology: braids and links in the classical and welded cases. We will also investigate the notion of
link-homotopy for homology cobordisms.

The following paragraphs provide an overview of our work and its historical context. The content
of the thesis will be briefly outlined, along with the main results. Then, at the end of this introduction,
the precise structure of the various chapters will be presented.

Braids are ubiquitous objects that can be considered and defined from several points of view.
We recall here their geometrical definition due to E. Artin in [Art25]. Let us take a 2-dimensional
disk D and let us also take n aligned points p1, . . . , pn in the interior of D. An n-strand braid
β “ pβ1, . . . , βnq is a smooth and proper embedding:

pβ1, . . . , βnq :
ğ

n

r0,1s Ñ D ˆ r0,1s

satisfying two conditions. Firstly, there exists an n-permutation π, such that for any integer i, the
endpoints satisfy βip0q “ ppi,0q and βip1q “ ppπpiq,1q. Secondly, for any t P r0,1s, the slice D ˆ ttu
intersects β in exactly n points, see Figure 6. A braid is said to be pure if its associated permutation
π is the identity.

E. Artin’s work focused mainly on braids up to isotopy (note that, in the context of braids, the
ambient isotopies are required to fix the boundary). In [Art47], he describes precisely the braid group.
This is the group obtained by endowing the set of braids up to isotopy with the braid composition,
an operation illustrated in Figure 7 which consists in stacking braids on top of each other. In addi-
tion, he shows that the braid group acts faithfully on the fundamental group of the punctured disk
Dztp1, ¨ ¨ ¨ ,pnu. From this action stems a representation, known as the Artin representation. This
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Figure 6: Example of a 3-strand pure braid.

=∙

Figure 7: Composition of two braids.

representation has since been declined in various settings and is still being studied today. Finally, E.
Artin in [Art47] was the first author to mention the notion of link-homotopy in the context of braids.
He raises the question of whether the notions of isotopy and link-homotopy of braids are different.

In [Gol74] D. L. Goldsmith answers the question, giving an example of a non-trivial braid up to
isotopy that is trivial up to link-homotopy, see Figure 8. She also gives a presentation of the homotopy
braid group, i.e., the group of braids up to link-homotopy with braid composition, which appears as
a quotient of the classical braid group.

↔ ∼ ↔ ∼ ∼

Figure 8: D. L. Goldsmith’s example of a braid that is trivial up to link-homotopy, but non-trivial
up to isotopy.

Motivated by the ‘torsion problem’ (see below), S. P. Humphries further pursued the study of
braids up to link-homotopy. He defined in [Hum01] a linear representation of the homotopy braid
group. However, this representation is not faithful. In contrast, we obtain the following.

Theorem A. There exists a faithful linear representation of the homotopy braid group for any number
of strands.

We give the detailed definition in Section 2.3; roughly speaking, this representation can be thought
of as the ‘linearization’ of the Artin representation.

Let us state now the torsion problem.

The torsion problem. Is there torsion in the homotopy braid group?
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This problem was first investigated by S. P. Humphries, who showed in [Hum01] that for less than
6 strands, the homotopy braid group is torsion-free. The torsion problem also appears in [BVW22],
where the authors mention the more general question of V. Lin, formulated in [Lin96] and taken up
in the Kourovka notebook [MK14]: ‘Is there a non-trivial epimorphism of the braid group onto a
non-abelian group without torsion?’. P. Linnell and T. Schick in [LT07] provide a complete solution
by showing that the braid group is residually torsion-free nilpotent-by-finite, hence in particular has
plenty of non-trivial torsion-free quotients. However, they only give an existence proof, and explicit
examples are not known for more than 6 strands. Our second main result on the homotopy braid
group solves the torsion problem:

Theorem B. The homotopy braid group is torsion-free for any number of strands.

We tackle this problem in two stages. We first prove a weak version, by showing that the homotopy
braid group is torsion-free for 10 strands or less, using purely classical techniques of braid theory. We
then extend this result, proving the statement for any numbers of strands, by using the broader context
of welded braids (see below). Interestingly, both proofs are based on similar techniques. However, if
we restrict ourselves to the case of classical braids, we obtain only a partial result (namely the above
weak version). Hence, Theorem B can be seen as one of the few known topological application of the
welded (and virtual) knot theory; see for instance [GPV00, ABMW17a, AM19, MY22].

Furthermore, as a corollary of Theorem B, we obtain that the braid group is torsion-free for
any number of strands (Corollary 4.3.10). This is a well-known fact due to Fadell and Neuwirth in
[FN62, Theorem 8]. Another classical proof of this result is based on a stronger property, shown
by P. Dehornoy in [Deh94], which states that braid groups are left-orderable. The property of left-
orderability for the homotopy braid group is not known to this day and constitutes an interesting
open question, as discussed in Remark 4.3.11.

Finally, the pure homotopy braid group has been studied by N. Habegger and X.-S. Lin in [HL90]
as an intermediate object for the classification of links up to link-homotopy. They use the notion of
reduced free group, which is the quotient of the free group in which each generator commutes with
any of its conjugates, a notion due to Milnor [Mil54].

We next address the problem initially posed by J. W. Milnor in [Mil54], of classifying links in the
3-sphere up to link-homotopy. J. W. Milnor himself answered the question for the 2 and 3-component
cases. Furthermore, N. Habegger and X.-S. Lin [HL90] proposed a complete classification, using a
subtle algebraic equivalence relation on pure braids, where two equivalent braids correspond to link-
homotopic links. This classification result remains however somewhat non-effective, owing to this
intricate equivalence relation involved. A more direct algebraic approach had been proposed by J.
Levine [Lev88] just before the work of N. Habegger and X.-S. Lin in the 4-component case. Our main
result concerning links is a new geometric proof of J. Levine’s classification of 4-component links up
to link-homotopy. Concretely, this accounts to make completely explicit, in a geometric way, the
algebraic ingredients used in Habegger–Lin’s work, thus providing an effective classification result.
This also provides a geometric interpretation of Levine’s work. The result can be roughly formulated
as follows, see Theorem 3.2.3 for a precise statement.

Theorem C. There is a complete classification of links up to link-homotopy for less than 4 compo-
nents, by computable numerical invariant.

Our approach seems to apply, at least in principle, to links with a higher number of components;
we illustrate this with the case of algebraically-split 5-component links (that is, 5-component links
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with vanishing linking numbers). As a matter of fact, the general 5-component case has since been
treated independently using our approach by Y. Kotorii and A. Mizusawa in [KM22]. The central
tool for our geometric proof is the theory of claspers.

The notion of claspers was developed by K. Habiro in [Hab00b], and independently by M.
Goussarov in [Gou99, Gou01] in the context of three-manifolds. These are thickened graphs in
three–manifolds with some additional structure, on which surgery operations can be performed. They
can be use effectively to study knotted objects and their invariants; see for example [Hab00b, Yas09,
MY12]. In [Hab00b], K. Habiro describes the clasper calculus up to isotopy, which is a set of geometric
operations on claspers that yield isotopic surgery results. In particular, he showed the close relation-
ship between claspers and the theory of finite type invariants (also known as Vassiliev invariant). It
is well known to experts how clasper calculus can be refined for the study of knotted objects up to
link-homotopy (see for example [FY09, Yas09]). This homotopy clasper calculus, which we review in
Section 1.1.2, is a central tool in our work on both links and braids.

Other important objects of this thesis are welded braids. Roughly speaking, welded braids are gen-
eralized braid diagrams, where virtual crossing are allowed in addition to the classical ones, regarded
up to certain local deformations generalizing the usual Reidemeister moves. An example of a welded
braid is given in Figure 9, where virtual crossings are represented by transverse double points. As

Figure 9: Example of a 3-strand pure welded braid.

with classical braids, welded braids can be endowed with a group structure, resulting in the welded
braid group, which was first introduced by R. Fenn, R. Rim’anyi, and C. Rourke, in [FRR97]. This
group turns out to have several equivalent definitions, of rather different natures, and appears in
various contexts under different names. A. G. Savushkina defines it in terms of automorphism of
the free group in [Sav96]; the pure welded braid group appears as the so-called McCool group in this
setting [McC86]. Other authors define it in terms of motion group of circles: J. C. Baez, D. K. Wise,
and A. S. Crans [BWC07] call it loop braid group, while in [BH13], T. E. Brendle and A. Hatcher call
it the group of untwisted rings. Finally, welded braids can also be seen as certain cylinders properly
embedded in the four-dimensional ball, see for instance [ABMW17a]. We will not discuss here these
different points of view, but we refer the reader to C. Damiani’s survey [Dam17] for more details. We
shall rather focus on the notion of link-homotopy for virtual and welded objects in this context.

H. A. Dye and L. H. Kauffman in [DK10] gave a first definition of link-homotopy for virtual objects
in terms of self-crossing change, which proves somewhat unsatisfactory (for example, virtual knots are
not always trivial up to self-crossing change). Subsequently, B. Audoux, P. Bellingeri, J.-B. Meilhan
and E. Wagner in [ABMW17a] and [ABMW17b] defined what appears to be the correct notion of link-
homotopy in the welded context in terms of self-virtualization. The authors, in light of N. Habegger
and X.-S. Lin [HL90], give a correspondence between pure welded braids up to link-homotopy and
conjugating automorphisms of the reduced free group. These results have been then extended by
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J. Darné in [Dar23], who gave a presentation of the pure welded braid group up to link-homotopy.
Based on this presentation and using the technology of arrow calculus, we obtain new presentations
of welded braid groups up to link-homotopy. Here, the notion of arrow calculus, developed by J.-B.
Meilhan and A. Yasuhara in [MY19], is the analogue of claspers calculus in the welded framework.
We also use it to extend our linear representation of Theorem A to the homotopy welded braid group.
Finally, we return to the torsion problem from the welded point of view. We show that the homotopy
braid group is torsion-free for any number of strands (Theorem B), thus giving an explicit solution
to V. Lin’s question.

The last objects discussed in this manuscript are homology cobordisms. These are 3-dimensional
manifolds that co-bound a surface and induce isomorphisms at the homology level. In the early 2000s,
M. Goussarov in [Gou99, Gou01] and K. Habiro in [Hab00b] defined these objects independently,
along with the associated clasper calculus as an important class of objects in the theory of finite
type invariant of 3-manifolds. Subsequently, N. Habegger, J. Levine and S. Garoufalidis in [Hab00a,
Lev01, GL05] studied homology cobordisms as an enlargement of the mapping class group. We refer
the reader to survey [HM12] for a precise description of these works.

The question of link-homotopy in this context is motivated by the so-called ‘Milnor-Johnson corre-
spondence’ which draws a strong analogy between braids, string-links, concordance, Milnor invariants
on one hand, and mapping class groups, homology cobordisms, homology cobordism classes, and John-
son homomorphisms on the other hand. We first observe that the natural algebraic approaches to this
question do not yield a satisfactory theory. Thus leads us to consider a graph-claspers-based defini-
tion instead. We explain, based on several counterexamples, how we are naturally led to a definition
which, although seemingly rigid, appears to be a promising candidate for a theory of link-homotopy
for homology cylinders.

This thesis consists of 5 chapters. Let us outline a bit more precisely the content of each.

Chapter 1 contains the topological and algebraic prerequisites that we will be using throughout
the thesis. In Section 1.1, we review the homotopy clasper calculus: after briefly recalling from
[Hab00b] K. Habiro’s clasper theory, we recall how a fundamental lemma from [FY09], combined
with K. Habiro’s work, produces a set of geometric operations on claspers having link-homotopic
surgery results. In Section 1.2 we introduce the reduced quotient of a group and study mainly that of
the free group. We prove, in Theorem 1.2.10, the existence and the unicity of a normal form for any
element of the reduced free group as a product of well-chosen commutators.

Chapter 2 is dedicated to the study of braids up to link-homotopy. We start by reinterpreting
braids in terms of claspers. In Section 2.1 we define comb-claspers, a family of claspers corresponding
to braid commutators. They are next used to define a normal form on braids up to link-homotopy,
thus allowing us to rewrite any braid as an ordered product of comb-claspers. In Section 2.2, we
give presentations of homotopy braid groups (Theorem 2.2.1 and Corollary 2.2.6), using the work
of [Gol74] and [MK99] as well as the technology of claspers. In Section 2.3, we define and study
the representation of the homotopy braid group of Theorem A. We give its explicit computation in
Theorem 2.3.5 (see also Example 2.3.7 for the 3-strand case) and show its injectivity in Theorem
2.3.11. Moreover, from the injectivity of the representation follows the uniqueness of the normal form
and thus the definition of the clasp-numbers, a collection of braid invariants up to link-homotopy.
In Section 2.4, we address the torsion problem in the homotopy braid group. Thanks to clasper
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calculus and a refinement, up to conjugation, of the normal form, we exhibit a potential torsion
candidate. We then show that its clasp-numbers must verify a certain equality for it to be a torsion
element (see Lemma 2.4.15). Then, in Theorem 2.4.19, we test the equality with the previously
defined representation, showing the absence of torsion for 10 strands or less. The proof is based on
a computer program (available on [Gra22]), so we can improve the result by optimizing the program
or using greater computing power; but this method will always yield a partial result. However, as
mentioned above, the ideas in this section combined with welded tools provide a complete answer to
the torsion problem.

Chapter 3 focuses on the study of links up to link-homotopy. The method used is based on the
precise description of some operations, which generate the algebraic equivalence relation mentioned
above in the classification result of N. Habegger and X.-S. Lin [HL90]; we provide them with a
topological description in terms of claspers. This new point of view allows us, for a small number of
components, to describe when two braids in normal form have link-homotopic closures. We translate
in terms of clasp-number variations the action of those operations on the normal form. In this way, we
recover the classification results of J. W. Milnor [Mil54] and J. Levine [Lev88] for 4 or less components
(Theorem C). Moreover, we also classify 5-component algebraically-split links up to link-homotopy
(Theorem 3.2.6).

Chapter 4 deals with the study of welded objects. General definitions are first given in Section
4.1, including a review of the arrow calculus developed in [MY19]. Then, in Section 4.2, building on
the work of Chapter 2, we show analogous results in the welded context. We give in Theorem 4.2.15
and Corollary 4.2.16 presentations of homotopy welded braid groups, using the work of [Dar23] and
[Dam17] as well as arrow calculus. We also show that the linear representation of Theorem A extends
to the group of homotopy welded braids. We give its explicit computation in Theorem 4.2.28 and
show its injectivity in Theorem 4.2.34. Finally, Section 4.3 returns to the torsion problem. We recast
the techniques of Section 2.4 in the larger welded setting using arrow calculus. This allows us to show
in Lemma 4.3.5 that the torsion problem is equivalent to whether a given welded braid is conjugate
to a classical braid up to link-homotopy. However, using algebraic techniques, we show that such
conjugate do not exist, which implies the absence of torsion in the homotopy braid group for any
number of strands, as stated in Theorem B.

The final exploratory chapter 5 deals with the study of homology cobordisms over a once-bordered
surface Σ. We aim to reinterpret the notion of link-homotopy for these objects. Our initial approach,
in Section 5.2, is algebraic in nature and aims to define an action of homology cobordisms on an
appropriate ‘reduced’ quotient of the fundamental group of Σ. However, this action cannot be
defined using Milnor’s notion of reduced quotient (Counter-examples 5.2.1 and 5.2.2). In Section
5.2.2, we attempt to restrict the action to a larger quotient, namely the fully reduced quotient, but
this quotient turns out to be too coarse, as illustrated by Theorem 5.2.8. Next, we explore a new
approach to defining link-homotopy in terms of graph-claspers in Section 5.3. We explain how this
boils down to defining a notion of repetition on leaves (analogous to Lemma 1.1.10). In Section
5.3.2.1, an initial naive definition of repetition is proposed, but it proves unsatisfactory, as illustrated
by Example 5.3.11. Finally, in Section 5.3.2.2, a less intuitive definition is suggested. Although we
do not delve deeper into the study of this notion within this manuscript, we consider it as a potential
avenue for future research.

It should be noted that the results of the first three chapters are essentially contained in the
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publication [Gra23]. These three chapters however contain more material than [Gra23], including in
particular our first (partial) solution to the torsion problem.
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Chapter 1

Requirements

In this chapter, we give the basic topological and algebraic tools that will be used throughout the
document. In Section 1.1, we define tangles. They encompass the objects that we will study in the
following sections: braids, string-links, knots and links. We also define claspers, powerful topological
tools which are particularly well-suited for the study of link-homotopy. Then, in Section 1.2, we turn
our attention to the reduced quotient of a group. More specifically, we study the reduced free group,
for which we propose a normal form as a product of well-chosen commutators.

1.1 Tangles and claspers

Clasper calculus has been developed by K. Habiro in [Hab00b] in the context of tangles up to isotopy
(Definition 1.1.1). Claspers turn out to be in fact a powerful tool to deal with link-homotopy (Defi-
nition 1.1.2). In Section 1.1.1 we define the main objects and their associated vocabulary. Then we
describe in Section 1.1.2 how to handle claspers up to link-homotopy.

1.1.1 General definitions

For simplicity, we decide to define and study tangles in the 3-dimensional ball. However, the results
presented in this section are naturally adaptable to the study of tangles in any 3-dimensional manifold.

Definition 1.1.1. An n-component tangle is a smooth embedding of an n-component, ordered, and
oriented 1-manifold (a disjoint union of circles and intervals) in the 3-dimensional ball. We also
required the embedding to be proper, which mean that the boundary of the 1-manifold must be sent
to the boundary of the 3-ball. We often identify the tangle with its oriented image (the orientation is
induced by the embedding). Each of the embedded component is called a component of the tangle.

Two tangles are isotopic if they are related by an ambient isotopy of the ball, fixing its boundary.

Definition 1.1.2. Two tangles are link-homotopic if there is a homotopy between them fixing the
boundary, and such that distinct components remain disjoint during the deformation.

Remark 1.1.3. Tangles are faithfully represented by a generic planar projection; generically, the
intersection points will not be more than double. By specifying at each crossing which strand passes
over the other, and specifying the orientation of the components, we get a tangle diagram.
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Theorem 1.1.4. [AB26, Rei26] Two tangles are isotopic, if and only if, their diagrams are related
by a sequence of Reidemeister moves (see Figure 1.1) and planar isotopies.

R1 R2 R3

Figure 1.1: The Reidemeister moves.

In the following theorem, we recall an alternative characterization from [Mil54] of the link-
homotopy in terms of diagrams.

Theorem 1.1.5. Two tangles are link-homotopic, if and only if, their diagrams are related by a
sequence of Reidemeister moves (see Figure 1.1), planar isotopies and self-crossing changes, i.e.,
crossing changes of arcs from the same component (see Figure 1.2).

Same
component ∼

Figure 1.2: A self-crossing change.

Definition 1.1.6. A disk T smoothly embedded in the interior of the 3-ball is called a clasper for a
tangle θ if it satisfies the following three conditions:

- T is the embedding of a connected thickened uni-trivalent tree with a cyclic order at each trivalent
vertex. Thickened univalent vertices are called leaves, and thickened trivalent vertices, nodes.

- θ intersects T transversely, and the intersection points are in the interior of the leaves of T .

- Each leaf intersects θ in at least one point.

It should be noted that our definition differs from that of [Hab00b]; claspers as defined here are
referred to in K. Habiro’s terminology as strict tree-claspers.

Diagrammatically, a clasper is represented by a uni-trivalent graph corresponding to the one to
be thickened. The trivalent vertices are thickened according to Figure 1.3. On the univalent vertices
we specify how the corresponding leaves intersect θ, and we also indicate how the edges are twisted
using markers called half-twists (see Figure 1.3).

Definition 1.1.7. Let T be a clasper for a tangle θ. We define the degree of T , denoted by degpT q,
as its number of nodes plus one, or equivalently, its number of leaves minus one. The support of T ,
denoted by supppT q, is defined to be the set of components of θ that intersect T .

14



Figure 1.3: Local diagrammatic representation of claspers.

Definition 1.1.8. A clasper T for a tangle θ is said to be simple if every leaf of T intersects θ
exactly once. A leaf of a simple clasper intersecting the l-th component is called an l-leaf.

Definition 1.1.9. We say that a simple clasper T for a tangle θ has repeats if it intersects a
component of θ in at least two points.

Given a disjoint union of claspers F for a tangle θ, there is a procedure called surgery detailed in
[Hab00b] to construct a new tangle, denoted θF . We illustrate on the left-hand side of Figure 1.4 the
effect of a surgery on a clasper of degree one. Now if F contains some claspers with degree higher or
equal than one, we first apply the rule shown on the right-hand side of Figure 1.4, at each trivalent
vertex: this breaks up F into a disjoint union of degree one claspers, on which we can perform surgery.

Figure 1.4: Rules of clasper surgery.

Note that clasper surgery commutes with ambient isotopy. More precisely, for i an ambient
isotopy and F a disjoint union of claspers for a tangle θ we have that ipθF q “ pipθqqipF q. This is an
elementary example of clasper calculus, which refers to the set of operations on unions of tangles with
some claspers, that allow to deform one into another with isotopic surgery result. These operations
are developed in [Hab00b], and we give in the next section the analogous calculus up to link-homotopy.

1.1.2 Clasper calculus up to link-homotopy

In the whole section, T and S denote simple claspers for a given tangle θ. We use the notation T „ S,
and say that T and S are link-homotopic when the surgery results θT and θS are so. For example, if
i is an ambient isotopy that fixes θ, then T „ ipT q. Moreover, if θT is link-homotopic to θ, we say
that T vanishes up to link-homotopy and we denote T „ H.

We begin by recalling a fundamental lemma from [FY09]; more precisely, the next result is the
case k “ 1 of [FY09, Lemma 1.2], where self C1-equivalence corresponds to link-homotopy.

Lemma 1.1.10. [FY09, Lemma 1.2] If T has repeats, then T vanishes up to link-homotopy.

It is well known to the experts that combining Lemma 1.1.10 with the proofs of K. Habiro’s
technical results on clasper calculus [Hab00b], yields the following link-homotopy clasper calculus.1

1Those moves are contained in [Yas09] and [MY12] together with [FY09].
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Proposition 1.1.11. [Hab00b, Proposition 3.23, 4.4, 4.5 and 4.6] We have the following link-
homotopy equivalences (illustrated in Figure 1.5).

(1) If S is a parallel copy of T which differs from T only by one half-twist (positive or negative),
then S Y T „ H.

(2) If T and S have two adjacent leaves and if T 1 Y S1 is obtained from T Y S by exchanging these
leaves as depicted in (2) from Figure 1.5, then T YS „ T 1 YS1 Y T̃ , where T̃ is as shown in the
figure.

(3) If T 1 is obtained from T by a crossing change with a strand of the tangle θ as depicted in (3)
from Figure 1.5, then T „ T 1 Y T̃ , where T̃ is as shown in the figure.

(4) If T 1 Y S1 is obtained from T Y S by a crossing change between one edge of T and one of S as
depicted in (4) from Figure 1.5, then T Y S „ T 1 Y S1 Y T̃ , where T̃ is as shown in the figure.

(5) If T 1 is obtained from T by a crossing change between two edges of T then T „ T 1.

ST  µ µ

T    ′T  

S  ′
 T        ′

T

S

  (1) (2) (3)
(4) (5)S′T    ′ST   T        ′ T        ′TT 

µµ ∼∼
∼

∼
∼

T
~

T
~

T
~∅

Figure 1.5: Basic clasper moves up to link-homotopy.

Idea of proof. The result of [Hab00b] used here are up to Ck-equivalence, that is, up to claspers of
degree up to k. The key observation is that, by construction, all such higher degree claspers have
same support as the initial ones, hence they are claspers with repeats. Lemma 1.1.10 then allows us
to delete them up to link-homotopy.

Remark 1.1.12. Lemma 1.1.10 combined with Proposition 1.1.11 gives us some further results:

- First, statement (4) implies that if |supppT qXsupppSq| ě 1 then we can realize crossing changes
between the edges of T and S.

- Moreover, if |supppT q X supppSq| ě 2 thanks to statement (2) we can also exchange the leaves
of T and S.

- Furthermore, statement (3) allows crossing changes between T and a component of θ in the
support of T
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Indeed, in each case the clasper T̃ involved in the corresponding statement has repeats and can thus
be deleted up to link-homotopy.

The next remark describes how to handle half-twists up to link-homotopy.

Remark 1.1.13. We have the following link-homotopy equivalences (illustrated in Figure 1.6).

(6) If T 1 is obtained from T by turning a positive half-twist into a negative one, then T „ T 1.

(7) If T 1 is obtained from T by moving a half-twist across a node then T „ T 1.

(8) If T and T 1 are identical outside a neighborhood of a node, and if in this neighborhood T and
T 1 are as depicted in (8) from Figure 1.6, then T „ T 1.

(8)(6) (7) T        ′ T          
 T        ′ T          T        ′ T         ∼∼ ∼

Figure 1.6: How to deal with half-twist up to link-homotopy.

Remark 1.1.14. Remark 1.1.13 allows us to bring all the half-twists on a same edge and then cancel
them pairwise. Therefore, we can consider only claspers with one or no half-twist.

Proposition 1.1.11 together with Remark 1.1.13 give us most of the necessary tools to understand
clasper calculus up to link-homotopy. The missing ingredient is the relation IHX which we give in
the following proposition.

Proposition 1.1.15. [CST07] Let TI , TH , TX be three parallel copies of a given simple clasper that
coincide everywhere outside a 3-ball, where they are as shown in Figure 1.7. Then TI YTH YTX „ H.
We say that TI , TH and TX verify the IHX relation.

TH TXTI

Figure 1.7: The IHX relation for claspers.

1.2 Reduced groups and commutators

In this document, the groups will be denoted multiplicatively, and ra,bs :“ aba´1b´1 will denote the
commutator of two elements a,b.

Definition 1.2.1. Let G be a group generated by tx1, . . . , xnu. We define JG Ÿ G to be the normal
subgroup generated by elements of the form rxi,λxiλ

´1s, for all i P t1, . . . , nu, and for all λ P G. We
call reduced quotient, the quotient G{JG and we denote it by RG.
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Remark 1.2.2. This definition depends on the choice of the generators tx1, . . . , xnu. We will develop
this point further in Chapter 5, when we discuss the notion of fully reduced groups.

In what follows, we work essentially with the free group Fn on n generators x1, . . . , xn. The
reduced quotient RFn “ Fn{J of the free group is called reduced free group, where J :“ JFn .

Definition 1.2.3. Let G be a group and x1, ¨ ¨ ¨ ,xn elements in G. A commutator in x1, ¨ ¨ ¨ , xn of
weight k pk ą 0q can be defined recursively, as follows:

• The commutators of weight one are x1, . . . , xn.

• The commutators of weight k are words rC1,C2s where C1, C2 are commutators verifying k “

wgpC1q ` wgpC2q where wgpC) denotes the weight of C.

Definition 1.2.4. We denote OccipCq “ r and we say that xi occurs r times in a commutator C if
one of the following holds:

• If C “ xj, then r “ 1 if i “ j and r “ 0 if i ‰ j.

• If C “ rC1,C2s, then r “ OccipC1q ` OccipC2q.

We say that a commutator C has repeats if OccipCq ą 1 for some i. We call support of the
commutator C, the set of elements xi (or by abuse just the set of indices i) such that OccipCq ą 0
and we denote it supppCq.

The following is a reformulation of Definition 1.2.1 that is used throughout the document.

Proposition 1.2.5. [Lev88, Proposition 3] The subgroup J is generated by commutators in x1, . . . , xn
with repeats. Hence, these commutators are trivial in the reduced free group. The reduced quotient of
a group G generated by x1, . . . , xn is given by adding to G, the relations C “ 1 for any commutator
C with repeats in x1, . . . , xn.

Corollary 1.2.6. The subgroup J is generated by commutators in x1, . . . , xn with repeats, subject to
the condition wgpCq ď 2n. Equivalently, the reduced quotient of a group G generated by x1, . . . , xn
admits a finite set of relations given by C “ 1 for any commutator C with repeats in x1, . . . , xn,
satisfying the condition wgpCq ď 2n. ¨

Proof. Let us first observe that for any commutator C “ rC1,C2s satisfying wgpCq ą 2n, there exists
(at least one) i P 1,2 such that wgpCiq ą n and wgpCiq ă wgpCq. Also, note that any commutator
C “ rC1,C2s belongs to the normal subgroups generated by C1 and C2. Thus, by iterating these two
results, we demonstrate that any commutator of weight strictly greater than 2n, and therefore with
repetitions, is generated by a commutator C satisfying n ă wgpCq ď 2n, and thus also has repetitions.
This shows, in particular, that any commutator with repetitions is generated by commutators with
repetitions of weight less than or equal to 2n and completes the proof.

The notion of basic commutators was first introduced in [Hal33] and was further studied in [LS01,
Hal59, MKS04] to describe the lower central series of the free group. It was then naturally adapted in
[Lev88] to the framework of the reduced free group. In the next definition, we describe a well-chosen
family of commutators. This family will replace the reduced basic commutators from [Lev88] and will
follow us throughout the whole document.
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Definition 1.2.7. Let us define the following family of commutators without repeats in RFn:

F “ tri1, . . . , ils | i1 ă ik, 2 ď k ď lulďn .

Here, we use the notation ri1,i2, ¨ ¨ ¨ , ils :“ rr¨ ¨ ¨ rrxi1 ,xi2s,xi3s, ¨ ¨ ¨ ,xil´1
s,xils. This is a finite set and

we can thus choose an arbitrary order on it, F “ trα1s, rα2s, . . . , rαmsu. We say that an element
ω P RFn is in normal form with respect to the order if

ω “ rα1se1rα2se2 ¨ ¨ ¨ rαmsem

for some integers te1, e2, . . . , emu.

Definition 1.2.8. We can define the order given for two commutators rαs “ ri1 ¨ ¨ ¨ ils and rα1s “

ri11 ¨ ¨ ¨ i1l1s by rαs ď rα1s if:

• wgpαq ă wgpα1q, or

• wgpαq “ wgpα1q and i1 . . . il ălex i11 . . . i
1
l.

Example 1.2.9. With respect to this order, the normal form of an element ω P RF3 “ xx1, x2, x3y

is given by 8 integers te1, . . . , e8u as follows:

ω “ r1se1r2se2r3se3r12se4r13se5r23se6r123se7r132se8 .

The following theorem is a kind of reduced analogue of Hall’s basis theorem [Hal59, Theorem
11.2.4]. It is to be compared with [Lev88, Proposition 6], where a different family of commutators is
used, see Remark 1.2.12.

Theorem 1.2.10. For any word ω P RFn there exists a unique ordered set of integers te1, . . . , emu

associated to the ordered family of commutators F “ trα1s, rα2s, . . . , rαmsu such that

ω “ rα1se1rα2se2 ¨ ¨ ¨ rαmsem .

Proof. Let us first express any commutator C as a product of commutators in F with the same weight
as C. To do so, we use the following three relations in RFn.

(i) rX,Y s´1 “ rY,Xs “ rX´1,Y s “ rX,Y ´1s with X,Y commutators.

(ii) rX,rY,Zss “ rrX,Y s,Zs ¨ rrX,Zs,Y s´1 with X,Y,Z commutators.

(iii) rUV,Xs “ rU,XsrV,Xs with U,V commutators such that supppUq X supppV q ‰ H.

Relation (i) allows us to move the generator xi1 with i1 “ minpsupppCqq at the desired position; we
obtain C “ r¨ ¨ ¨ rxi1 ,C1s, ¨ ¨ ¨ ,Cks˘1. Relations (i), (ii) and (iii) are used to decrease the weight of the
commutator Ci in this expression. We start with C1 “ rC 1

1,C
1
2s supposing its weight is bigger than

one, and we get:

C “ r¨ ¨ ¨ rxi1 ,rC
1
1,C

1
2ss, ¨ ¨ ¨ ,Cks˘1

“ r¨ ¨ ¨ rrxi1 ,C
1
1s,C 1

2s ¨ rrxi1 ,C
1
2s,C 1

1s´1, ¨ ¨ ¨ ,Cks˘1

“ r¨ ¨ ¨ rrxi1 ,C
1
1s,C 1

2s, ¨ ¨ ¨ ,Cks˘1r¨ ¨ ¨ rrxi1 ,C
1
2s,C 1

1s´1, ¨ ¨ ¨ ,Cks˘1

“ r¨ ¨ ¨ rrxi1 ,C
1
1s,C 1

2s, ¨ ¨ ¨ ,Cks˘1r¨ ¨ ¨ rrxi1 ,C
1
2s,C 1

1s, ¨ ¨ ¨ ,Cks¯1.
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Since wgpC 1
1q ă wgpCq and wgpC 1

2q ă wgpCq we know that by iterating this operation on the new
terms we can rewrite C as a product of commutators of the form r¨ ¨ ¨ rxi1 ,xi2s,C2s, ¨ ¨ ¨ ,Cks, having in
particular the same weight as C. We finish by repeating the process on C2, . . . , Ck.

For any ω P RFn, we can now demonstrate the existence of a decomposition ω “
ś

αPF rαseα .
We begin by expressing w as a product of weight 1 commutators belonging to F . This is possible
because weight 1 commutators in F are precisely the generators x1, . . . , xn ofRFn. Next, we rearrange
these weight-one commutators according to the order given by the family F . This is achieved up to
commutators of weight strictly higher than one, as two commutators commute up to commutators
of strictly higher weight. Using the argument given at the beginning of this proof, we may safely
assume that these higher weigh commutators belong to F . We then consider, among these new
commutators, those of weight two and rearrange them according to the order in F . Again, this
introduces higher weight factors, which can also be assumed to be elements of F . By iterating
this procedure, we eventually obtain the desired decomposition. Indeed, the procedure terminates
because any commutator of weight strictly bigger than n has repeats and is then trivial according to
Proposition 1.2.5.

To prove the unicity of the decomposition, we work with the unit group Un of the ring of power
series in non-commuting variables X1, . . . , Xn. More precisely, we consider its quotient Ũn in which
the monomials Xα “ Xα1Xα2 ¨ ¨ ¨Xαn vanish when they have repetition (i.e., αi “ αj for some i ‰ j).
The elements that we will consider in Ũn are of the form 1`Q with Q a sum of monomials of positive
degree, and their inverses are given by p1 ` Qq´1 “ 1 ` Q̄ with Q̄ “ ´Q ` Q2 ´ Q3 ` ¨ ¨ ¨ p´1qnQn.
Now we can define the reduced Magnus expansion M̃ . This is a homomorphism from the reduced free
group RFn to Ũn, defined by M̃pxiq “ 1`Xi. The following computation shows that M̃ respects the
relations of the reduced free group, meaning that M̃prxi,λxiλ

´1sq “ 1 for any generator xi and any λ
in Fn:

M̃pλxiλ
´1qM̃pxiq “

´

M̃pλqp1 ` XiqM̃pλ´1q

¯

p1 ` Xiq

“ 1 ` Xi ` M̃pλqXiM̃pλ´1q

“ p1 ` Xiq

´

M̃pλqp1 ` XiqM̃pλ´1q

¯

“ M̃pxiqM̃pλxiλ
´1q.

An easy induction on the weight l of the commutator rαs P F defined in Definition 1.2.7 gives the
following:

Claim 1.2.11. For every rαs “ rα1, ¨ ¨ ¨ ,αls P F , M̃prαsq “ 1 ` Xα ` QlpXα1 , ¨ ¨ ¨ ,Xαl
q where Ql is

a sum of monomials of degree l “ wgprαsq not starting with Xα1, and where each variable Xαi for
i P t1, . . . , lu appears exactly once.

Now, we take ω “
ś

αPF rαseα “
ś

αPF rαse
1
α two decompositions of an element ω P RFn. We prove

by induction on the weight of rαs that eα “ e1
α for any commutator rαs P F . Suppose that eα “ e1

α

for any rαs of weight ă k and compare the coefficients of the monomial Xα in both M̃p
ś

αPF rαseαq

and M̃p
ś

αPF rαse
1
αq for a fixed commutator rαs of degree k. According to Claim 1.2.11, commutators

of weight ą k do not contribute to this coefficient and the only contributing weight k commutator
is rαs itself with coefficient eα (resp. e1

α). Commutators of weight ă k may also contribute to this
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coefficient, but the induction hypothesis ensures that the contribution is the same in both expressions.
This proves that eα “ e1

α for any rαs of weight k and concludes the proof.

Remark 1.2.12. Unlike Levine’s proof of [Lev88, Proposition 6], this proof does not require M. Hall’s
basis theorem [Hal59, Theorem 11.2.4].

Definition 1.2.13. To the ordered set of commutators F “ trα1s, . . . , rαmsu in RFn we associate a
Z-module V formally generated by tα1, . . . , αmu. We also define the linearization map ϕ : RFn Ñ V
by:

ϕpωq “ e1α1 ` ¨ ¨ ¨ ` emαm where rα1se1 ¨ ¨ ¨ rαmsem is the normal form of ω.

We keep calling ‘commutators’ the generators of V and we define the support and the weight of α to
be those of rαs.

We stress that the normal form and the linearization map ϕ both depend on the ordering on F .

Lemma 1.2.14. The Z-module V is of rank,

rkpVq “
ÿ

0ďlďkăn

k!

l!
.

Moreover we can decompose V into a direct sum of submodules Vi generated by the commutators of
weight i. Then we obtain that:

rkpViq “

ˆ

n

i

˙

pi ´ 1q!.

Proof. The first equality comes by counting the cardinality of F . To do so, we first count the elements
rαs with first term α1 “ k. To choose α2, α3, . . . , αl with 0 ď l ă n ´ k we only have to respect the
condition that α1 ă αi. Thus they can be freely chosen in tk ` 1, . . . , nu and therefore:

rkpVq “

n
ÿ

k“1

n´k`1
ÿ

l“1

pn ´ kq!

pn ´ k ´ l ` 1q!
“

n´1
ÿ

k“0

k
ÿ

l“0

k!

pk ´ lq!
“

n´1
ÿ

k“0

k
ÿ

l“0

k!

l!
.

For the second equality, we follow the same kind of reasoning, but this time α1 “ k must be chosen
in t1, . . . , n ´ i ` 1u, then we choose the i ´ 1 last numbers α2, . . . , αi without restriction in
tk ` 1, . . . , nu. We obtain:

rkpViq “

n´i`1
ÿ

k“1

pn ´ kq!

pn ´ k ´ i ` 1q!
“

n´1
ÿ

k“i´1

k!

pk ´ i ` 1q!
“

˜

n´1
ÿ

k“i´1

ˆ

k

i ´ 1

˙

¸

pi ´ 1q!,

and we conclude using the so-called Hockey-stick identity.

21



Chapter 2

Braids up to link-homotopy

This chapter is dedicated to the study of braids up to link-homotopy. In the next section, we intro-
duce the notion of comb-claspers for braids, that yields a normal form result up to link-homotopy.
Then, in Section 2.2, we give a new presentation of the homotopy braid group inspired from that of
Goldsmith [Gol74] with a more symmetric structure. Section 2.3 deals with a linear representation
of the homotopy braid group, defined and studied using clasper calculus. Finally, in Section 2.4, we
begin to tackle the torsion problem, to which we provide a partial answer, to be completed later in
chapter 4.

2.1 Braids and comb-claspers

Let D be the unit disk with n fixed points tpiuiďn on a diameter δ, and let I be the unit interval
r0, 1s. Set also I1, . . . , In, n copies of I, and

Ů

iďn
Ii their disjoint union.

Definition 2.1.1. An n-component braid β “ pβ1, . . . , βnq is a smooth proper embedding

pβ1, . . . , βnq :
ğ

iďn

Ii Ñ D ˆ I

such that, for some permutation of t1, . . . , nu associated to β, denoted πpβq, we have βip0q “ ppi, 0q

and βip1q “ ppπpβqpiq, 1q for any i. We also require the embedding to be monotonic, which means that
βiptq P D ˆ ttu for any t P r0, 1s. We call (the image of) βi the i-th component of β. We say that a
braid β is pure if its associated permutation πpβq is the identity.

We emphasize that braids are oriented from top to bottom; in particular, the interval I is
parametrized in an unconventional manner, runing from ‘0’ at the top to ‘1’ at the bottom.

The composition of braids consists in stacking the braids one below the other: it is defined as
follows. Let β and β1 be two braids. Then their composition ββ1 is a braid defined by

ββ1
iptq “

"

h0pβip2tqq, for t P r0,12 s,
h1pβ1

πpβqpiqp2pt ´ 1
2qq, for t P r12 ,1s,

with i P rr1,nss, and where the maps h0 and h1 : D ˆ I ÞÑ D ˆ I are defined for x P D and t P I by

h0px,tq “ px,
1

2
`

t

2
q, and h1px,tq “ px,

t

2
q.
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See Figure 2.1 for illustration.

=∙

Figure 2.1: Example of composition of two braids.

Definition 2.1.2. The set of braids up to ambient isotopy fixing the boundary, equipped with the
stacking operation, forms a group. It is called the braid group and it is denoted by Bn. The set of
pure braids up to isotopy forms a subgroup of Bn denoted by Pn and called the pure braid group.

Definition 2.1.3. The set of braids up to link-homotopy equipped with the stacking operation forms
a group. It is called the homotopy braid group and it is denoted by hBn. Elements of hBn are
called homotopy braids. The set of pure braids up to link-homotopy forms a subgroup of hBn denoted
by hPn and called the pure homotopy braid group.

Remark 2.1.4. In [Art47], Artin raises the question of whether the notions of isotopy and link-
homotopy of braids are different or identical. Goldsmith, in [Gol74], shows that the two notions are
in fact different. As an illustration, we present Goldsmith’s example of a braid in Figure 2.2, which
is trivial up to link-homotopy but non-trivial up to isotopy.

∼ ∼ ∼ ∼ ∼
Figure 2.2: Example of a trivial braid up to link-homotopy, but non-trivial up to isotopy.

Remark 2.1.5. Braids are tangles without closed components, and with boundary and monotonic
conditions. But any (pure) tangle without closed components is link-homotopic to a (pure) braid (in
the pure case, such tangles are called string-links in the literature). Thus, when regarding braids up
to link-homotopy we can freely consider them as tangles, i.e., we can forget the monotonic condition.
This is useful from the clasper point of view since clasper surgery does not respect this condition in
general.

We introduce next comb-claspers and their associated notation. Consider the usual representative
1 of the trivial n-component braid given by 1i “ tpiu ˆ I for i P t1, . . . , nu. Denote by pD ˆ Iq` and
pD ˆ Iq´ the two half-cylinders determined by the plane δ ˆ I, where δ is the fixed diameter on D.
In figures, we choose pD ˆ Iq` to be above the plane of the projection.
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Definition 2.1.6. We call comb-clasper a simple clasper without repeats for the trivial braid such
that:

- Every edge is in pD ˆ Iq`.

- The minimal path running from the smallest to the largest component of the support meets all
nodes.

- At each node, the edge that does not belong to the minimal path leaves ‘to the left’ as locally
depicted in Figure 2.3.

Minimal  
 path

Edge    to 
the  left

Figure 2.3: Local orientation at each node of a comb-clasper.

An example is given in Figure 2.4.

The second condition of Definition 2.1.6 implies that every node is connected (by an edge and a
leaf) to a component of 1 that is not the smallest or the largest of the support. Using this fact, we
can order the support of a comb-clasper: we start with the smallest component, then we order the
components according to the order in which we meet them along the minimal path, and finally, we
end with the largest one. For example, in Figure 2.4 the ordered support is t1, 2, 6, 4, 5, 8u.

Once the ordered support ti1, i2, . . . , ilu is fixed, the only remaining indeterminacy in a comb-
clasper is the embedding of the edges in pD ˆ Iq`. This depends on the relative position of the
edges, and on the number of half-twists on each of them. However, up to link-homotopy the relative
position of the edges is irrelevant (by move (5) from Proposition 1.1.11). Besides, by Remark 1.1.14,
we can always suppose that a comb-clasper contains either one or no half-twist; moreover by Remark
1.1.13 we can freely assume that the potential half-twist is located on the edge connected to the il-th
component. We can thus unambiguously (up to link-homotopy) denote by pi1,i2, ¨ ¨ ¨ ,ilq the comb-
clasper with such a half-twist and by pi1,i2, ¨ ¨ ¨ ,ilq

´1 the same clasper without any half-twist; we call
them respectively twisted and untwisted comb-claspers. For example, the twisted comb-clasper
p126458q is illustrated in Figure 2.4.

In what follows we blur the distinction between comb-claspers and the result of their surgery up
to link-homotopy. From this point of view, a comb-clasper is a pure homotopy braid and the product
pαqpα1q of two comb-claspers is the product 1pαq1pα1q. In particular, according to move (1) from
Proposition 1.1.11, the inverse of a comb-clasper pαq is given by pαq´1.

Lemma 2.1.7. Let T be a simple clasper of degree k for the trivial braid 1, then 1T is link-homotopic
to a product of comb-claspers with degree greater than or equal to k.
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2 51 4 6 873

Figure 2.4: The twisted comb-clasper p126458q.

Proof. First, we use isotopies and move (3) from Proposition 1.1.11 to turn T into a product of
clasper with edges in pD ˆ Iq`. This step may create claspers of higher degree (corresponding to
clasper T̃ in move (3)): in that case we also apply isotopies and move (3) on them until we get the
desired product. Note that the procedure must stop. Indeed, move (3) always creates claspers of
strictly higher degree, and when the degree is higher than the number of strands, the claspers have
repetitions and are therefore trivial up to link-homotopy (Lemma 1.1.10). Then, by the IHX relation
of Proposition 1.1.15, we can further assume that for each clasper, the minimal path running from
the smallest to the largest component meets all its nodes. Finally, we apply move (8) from Remark
1.1.13 to satisfy the third condition of Definition 2.1.6 and obtain a product of comb-claspers.

Definition 2.1.8. We say that a pure homotopy braid β P hPn given by a product of comb-claspers
β “ pα1q˘1pα2q˘1 ¨ ¨ ¨ pαmq˘1 is :

• stacked if pαiq “ pαjq for some i ď j implies that pαiq “ pαkq for any i ď k ď j,

• reduced if it contains no redundant pair, i.e., two consecutive factors are not the inverse of each
other.

If β is reduced and stacked, we can then rewrite β “
ś

pαiq
νi for some integers νi and with pαiq ‰ pαjq

for any i ‰ j. Moreover, given an order on the set of twisted comb-claspers, we say that a reduced
and stacked writing is a normal form of β for this order if pαiq ď pαjq for all i ď j.

We stress that the notion of normal form is relative to a given order on the set of twisted comb-
claspers. The following definition will be relevant for Chapter 3.

Definition 2.1.9. Given two twisted comb-claspers pαq “ pi1 ¨ ¨ ¨ ilq and pα1q “ pi11 ¨ ¨ ¨ i1l1q we can
choose the order pαq ď pα1q defined by:

• maxpsupppαqq ă maxpsupppα1qq, or

• maxpsupppαqq “ maxpsupppα1qq and degpαq ă degpα1q, or

• maxpsupppαqq “ maxpsupppα1qq and degpαq “ degpα1q and i1 . . . il ălex i11 . . . i
1
l,

where ălex denotes the lexicographic order.

Example 2.1.10. With respect to this order, the normal form of an element β P hP4 is given by 12
integers tν12, . . . , ν1324u as follows:

β “ p12qν12p13qν13p23qν13p123qν123p14qν14p24qν24p34qν34p124qν124p134qν134p234qν234p1234qν1234p1324qν1324 .
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Theorem 2.1.11. Any pure homotopy braid β P hPn can be expressed in a normal form, for any
order on the set of twisted comb-claspers.

Proof. Note that the comb-clasper pijq corresponds to the usual pure braid group generator Aij P hPn

(see Figure 2.6). Thus it is clear that β “
ś

pαq˘1 for some degree one comb-claspers pαq˘1.

Now we rearrange these degree one factors according to the chosen order by moves (2) and (4)
from Proposition 1.1.11. This introduces new claspers of degree strictly higher than one, and by
Lemma 2.1.7 we can freely assume that these are all comb-claspers. Next we consider, among these
new comb-claspers, those of degree two and we rearrange them according to the order. Again this
introduces higher degree factors, which can all be assumed to be comb-clasper according to Lemma
2.1.7. By iterating this procedure degree by degree, we eventually obtain the desired normal form.
Indeed, the procedure terminates because claspers of degree higher or equal than n are trivial in hPn

by Lemma 1.1.10.

Remark 2.1.12. This result is to be compared with Theorem 4.3 of [Yas09], which uses a different
notion of comb-clasper, ordered according to the clasper degree.

2.2 Braid group presentations

In this section, we use the usual Artin braid generators σi for i P t1, . . . , n ´ 1u illustrated in Figure
2.5 and the usual pure braid generators Aij “ σj´1σj´2 ¨ ¨ ¨σi`1σ

2
i σ

´1
i`1 ¨ ¨ ¨σ´1

j´2σ
´1
j´1 for 1 ď i ă j ď n,

illustrated in Figure 2.6.

ni1 i+1
Figure 2.5: The Artin generator σi.

nji1
Figure 2.6: The pure braid generator Aij .

We first recall the usual presentations of the braid group from [Art47] and the pure braid group
from [Bir74].

Theorem 2.2.1. A presentation1 for the braid group is given by:

Bn “ xσi
ˇ

ˇ

ˇ

ˇ

rσi,σjs “ 1 if |i ´ j| ą 1
σiσjσi “ σjσiσj if |i ´ j| ď 1 y.

A presentation for the pure braid group is given by:

Pn “ xAij

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rArs,Aijs “ 1 for r ă s ă i ă j or r ă i ă j ă s

rArs,Arjs “ rA´1
sj ,Arjs for r ă s ă j

rArs,Asjs “ rA´1
sj ,A

´1
rj s for r ă s ă j

rAri,Asjs “ rrA´1
ij ,A´1

rj s,Asjs for r ă s ă i ă j
y.

1For the sake of compactness, here and in all presentations of the chapter, generators are indexed as above. That is,
generators σi are indexed by integers i P t1, . . . , n ´ 1u, and generators Aij by pairs of integers 1 ď i ă j ď n ´ 1u.
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The following theorem is based on the result of [Gol74].

Proposition 2.2.2. Let J Ÿ Bn denote the normal subgroup generated by all elements of the form
rAij ,λAijλ

´1s where λ belongs to Pn. We obtain the homotopy braid group hBn as the quotient:

hBn “ Bn{J.

This induces the following presentation2 for hBn:

hBn “ xσi
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

σiσjσi “ σjσiσj if |i ´ j| ď 1
rσi,σjs “ 1 if |i ´ j| ą 1
“

Aij ,λAijλ
´1
‰

“ 1 for i ă j and λ P hPn
y.

Proof. In [Gol74], the homotopy braid group hBn appears as the quotient Bn{J 1, where J 1 Ÿ Bn

is the normal subgroup generated by elements of the form rAij ,λAijλ
´1s where λ belongs to the

normal subgroup generated by tA1,j , . . . , Aj´1,ju. Our result relies on the observation that J “ J 1.
Obviously J 1 Ă J thus we only need to show that J Ă J 1. This is equivalent to showing that for
any λ P Pn, the pure braid Aij and λAijλ

´1 commute up to link-homotopy. Let us remind that Aij

is the surgery result 1pijq of the comb-clasper pijq. Take Λ a given representative of λ, and consider
an ambient isotopy ι sending Λ1Λ´1 to the trivial braid 1. Now, consider the comb-clasper pijq as a
clasper for the braid Λ1Λ´1 and denote it by ΛpijqΛ´1. Apply ι to the braid Λ1Λ´1 together with the
clasper ΛpijqΛ´1. This isotopy sends ΛpijqΛ´1 to a clasper for the trivial braid, denoted C, whose
surgery result is the conjugate λAijλ

´1. Since ambient isotopies preserve the support, it is clear that
supppCq “ supppΛpijqΛ´1q “ ti,ju. Hence, according to Remark 1.1.12, we have pijqC „ Cpijq, and
the result is proved.

Remark 2.2.3. The presentation provided in Proposition 2.2.2 is not a finite presentation due to
the infinite set of reduced-type relations

“

Aij ,λAijλ
´1
‰

“ 1. However, by using the characterization
in terms of repeated commutators, as seen in Proposition 1.2.5, we can use Corollary 1.2.6 how to
reduce it to a finite set of relations.

Remark 2.2.4. This proposition can also be demonstrated purely algebraically. It was the subject of
the master’s thesis of I. Mazzotti, which I co-supervised in Caen. The proof is much more technical
and it is based on commutator calculus [MK99] and braid group presentation results [Gol74, Min15].

In order to obtain a similar result for the pure homotopy braid group we need the following.

Lemma 2.2.5. The subgroup JŸBn normally generated in Bn by elements of the form rAij ,λAijλ
´1s

for λ P Pn, seen as a subgroup of Pn, coincides with the normal subgroup of Pn generated by elements
of the form rAij ,λAijλ

´1s for λ P Pn.

Proof. For k P t1, . . . , n ´ 1u, 1 ď i ă j ď n and λ P Pn we compute:

σkrAij ,λAijλ
´1sσ´1

k “

$

’

’

’

’

&

’

’

’

’

%

rAi`1j ,λ1Ai`1jλ
´1
1 s if i “ k and j ‰ k ` 1

rAi`1j ,λ2Ai`1jλ
´1
2 s if j “ k

Akk`1rAi´1j ,λ3Ai´1jλ
´1
3 sA´1

kk`1 if i “ k ` 1

Akk`1rAij´1,λ4Aij´1λ
´1
4 sA´1

kk`1 if i ‰ k and j “ k ` 1

rAij ,λ5Aijλ
´1
5 s otherwise,

2By the notation λ P Pn here we mean that λ is a pure homotopy braid, i.e., a word in the pure homotopy braid
generators tAij “ σj´1σj´2 ¨ ¨ ¨σi`1σ

2
i σ

´1
i`1 ¨ ¨ ¨σ´1

j´2σ
´1
j´1u and their inverses.
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with λi P Pn for i P t1, 2, 3, 4, 5u. Therefore, the conjugates σkrAij ,λAijλ
´1sσ´1

k are always conjugates
of rAi1j1 ,λ1Ai1j1pλ1q´1s in Pn for some 1 ď i1 ă j1 ď n and some λ1 P Pn, and the proof is complete.

Corollary 2.2.6. Let J ŸPn be the normal subgroup generated by elements of the form rAij ,λAijλ
´1s

for any λ P Pn. We obtain the pure homotopy braid group hPn as the reduced quotient relative to the
generative system tAij | i ă ju of the pure braid group:

hPn “ Pn{J “ RPn.

This induces the following presentation for hPn:

hPn “ xAij

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rArs,Aijs “ 1 for r ă s ă i ă j or r ă i ă j ă s
rArs,Arjs “ rArj ,Asjs “ rAsj ,Arss for r ă s ă j
rAri,Asjs “ rrAij ,Arjs,Asjs for r ă s ă i ă j
“

Aij ,λAijλ
´1
‰

“ 1 for i ă j and λ P hPn

y.
Proof. The first half of the statement is a direct consequence of Proposition 2.2.2 and Lemma 2.2.5.
The presentation is obtained from that of Theorem 2.2.1, using the relation rArs,A

´1
ij s “ rArs,Aijs

´1

which holds in RPn.

Remark 2.2.7. Once again, in Corollary 2.2.6, we provide an infinite presentation of the pure
homotopy braid group seen as a reduced quotient. However, using Corollary 1.2.6, we can simplify
this type of presentation to obtain a finite one.

We next recall two classical representations of braid groups.

Definition 2.2.8. We call Artin representation the homomorphism ρ : Bn Ñ AutpFnq defined as
follows:

ρpσiq :

$

&

%

xi ÞÑ xi`1,

xi`1 ÞÑ xi`1xix
´1
i`1,

xk ÞÑ xk if k R ti, i ` 1u.

Similarly, the homomorphism ρh : hBn Ñ AutpRFnq defined by the same expressions is called the
homotopy Artin representation.

As the name suggests, ρ was introduced by Artin in [Art47], where its faithfulness is also shown.
As for the link-homotopic version ρh, it is proved in [HL90] that its restriction to the pure homotopy
braid group is faithful. Furthermore, for any braid β P hBn and any generator xi P RFn, the image
ρhpβqpxiq is a conjugate of xπ´1pβqpiq. In particular, the kernel of ρh must belong to the pure homotopy
braid group. The homotopy Artin representation ρh is therefore clearly faithful.

2.3 A linear faithful representation of the homotopy braid group

This section is devoted to the definition and study of a faithful linear representation of the homotopy
braid group. We first define it algebraically, then give a procedure based on clasper calculus to
compute it explicitly. Finally, we show its injectivity and use it to prove the uniqueness of the normal
form in the homotopy braid group.
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2.3.1 Algebraic definition

Let GLpVq be the general linear group of the Z-module V introduced in Definition 1.2.13. In order
to define our linear representation γ : hBn Ñ GLpVq, we state the following preparatory lemma. Let
us denote by Nj the subgroup normally generated by xj in RFn for j P t1, . . . , nu; note that Nj is
an abelian group.

Lemma 2.3.1. Let β P hBn be a homotopy braid and C P Nj a commutator in RFn. If the product
rα1se1 ¨ ¨ ¨ rαmsem is the normal form of ρhpβqpCq (associated to a given order), then we have that
ei “ 0 if rαis R Nπ´1pβqpjq. Here π´1pβqpjq is the image of j by the permutation induced by β´1.

In other words, in the image of C P Nj by ρhpβq, the letter xπ´1pβqpjq occurs in each factor of the
normal form.

Proof. Note first that any element of Nj is sent by ρhpβq to an element of Nπ´1pβqpjq. This is clear for
the Artin generators σi, and so is it for any braid β. Next, for a given integer k P t1, ¨ ¨ ¨ , nu, consider
the endomorphism of RFn defined by xi ÞÑ 1, if i “ k and xi ÞÑ xi, otherwise. This endomorphism
sends a commutator to 1 if it belongs to Nk and to itself otherwise. In addition, it sends the normal
form of any ω P Nk to the normal form of 1. So by unicity of the normal form in RFn (Theorem
2.3.12), for any ω P Nk, the normal form ω “ rα1se1 ¨ ¨ ¨ rαmsem contains only commutators in Nk, i.e.,
ei “ 0 if rαis R Nk.

Recall from Definition 1.2.13 the linearization map ϕ : RFn Ñ V. Recall also from definition 1.2.7
the family F of (basic) commutator in RFn.

Proposition 2.3.2. The map

γ : hBn Ñ GLpVq

defined for β P hBn and rαs P F by γpβqpαq “ ϕ ˝ ρhpβqprαsq is a well-defined homomorphism.
Moreover, γ does not depend on the chosen order on F .

Proof. Since ϕ is not a homomorphism in general, it is not clear that γ is a representation. Yet we do
have that γpββ1q “ γpβqγpβ1q for any two homotopy braids β and β1, which is shown as follows. Let
rαs be a commutator in F and α its corresponding commutator in V. We choose some j P suppprαsq so
that rαs is in Nj . Set γpβ1qpαq “

ř

i eiαi for some commutators αi P V associated to the commutators
rαis P F and some integers ei. Then we have

γpββ1qpαq “ ϕ ˝ ρhpβqρhpβ1qprαsq “ ϕ ˝ ρhpβq

´

ź

i

rαis
ei
¯

“ ϕ
´

ź

i

ρhpβqprαisq
ei
¯

.

Now, using Lemma 2.3.1 we know that rαis is in Nπ´1pβ1qpjq for any i. Moreover, Lemma 2.3.1 implies
that any commutator in the normal form of ρhpβqprαisq is in the abelian group Nπ´1pββ1qpjq for any i.
But note that for C1, . . . , Ck a collection of commutators in F such that rCi,Cjs “ 1 for any i, j, we
have that ϕpC1 ¨ ¨ ¨Ckq “ ϕpC1q ` ¨ ¨ ¨ ` ϕpCkq. Hence ϕ behaves like a homomorphism on the product
ś

i ρhpβqprαisq
ei , and finally,

ϕ
´

ź

i

ρhpβqprαisq
ei
¯

“
ÿ

i

eiϕ
´

ρhpβqprαisq

¯

“
ÿ

i

eiγpβqpαiq “ γpβq

´

ÿ

i

eipαiq

¯

“ γpβqγpβ1qpαq.
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This shows that γ is a well-defined homomorphism.

To prove the independence on the chosen order on F we use Lemma 2.3.1 again. For any β P hBn

and any rαs P F , all the commutators in the normal form of ρhpβqprαsq commute with each other.
In particular, if we set two orderings trα1s, . . . , rαmsu and trασp1qs, . . . , rασpmqsu on F then the two
associated normal forms

ρhpβqprαsq “ rα1se1 ¨ ¨ ¨ rαmsem “ rασp1qs
e1
σp1q ¨ ¨ ¨ rασpmqs

e1
σpmq

satisfy ei “ e1
i for any i and therefore ϕ˝ρh “ ϕ1 ˝ρh for the two linearization maps ϕ and ϕ1 associated

to the orderings.

Remark 2.3.3. The homomorphism γ is in fact injective. Since ϕ is clearly injective, this can be
shown using the injectivity of ρh. However, we will give below another proof of this result in Theorem
2.3.11 using clasper calculus, which in turn reproves the injectivity of ρh. Furthermore, our approach
by clasper calculus allows explicit computations of the representation, as shown in the next section.

2.3.2 Clasper interpretation

We first give a topological interpretation of the Artin (resp. homotopy Artin), representation. We
can see the free group Fn (resp. reduced free group RFn) on which Bn (resp. hBn) acts, as the
fundamental group (resp. the reduced fundamental group) of the complement of the n-component
trivial braid. Therefore, an element of Fn (resp. RFn) can also be seen as the homotopy (resp.
the reduced homotopy3) class of an pn ` 1q-th component in this complement. On the diagram, we
place this new strand to the right of the braid and we label it by ‘8’. Thus, the generators xi of Fn

(resp RFn) are given by the pure braids Ai8 shown in Figure 2.7, which can be reinterpreted with the
comb-claspers pi,8q depicted in the same figure. There and in subsequent figures, we simply represent
with a circled ‘8’ the leaf intersecting the 8-th component. In this context, the automorphism ρpβq

(i,∞)ni1∞ni1 22 n–1 n–1
xi ∞

Figure 2.7: Pure braid and clasper interpretations of the generator xi.

(resp. ρhpβq) associated to an element β in Bn (resp. hBn) is given on a generator xi P Fn (resp.
RFn) by considering the conjugation β1pi,8qβ´1 illustrated in Figure 2.8. Then, we apply an isotopy,
transforming β1β´1 into 1, as in the proof of 2.2.2. By doing so the clasper pi,8q is deformed into a
new clasper which we are able to reinterpret as an element of Fn or RFn.

In this way, we obtain an explicit procedure to compute our representation γ from Proposition
2.3.2 using clasper calculus, as follows. Given β P hBn and α P V, the computation of γpβqpαq goes
in 3 steps:

Step 1 Consider the conjugate of the comb-clasper pα,8q by the braid β (see Figure 2.8).

3Here by reduced homotopy class, we mean the image in the reduced quotient of the homotopy class of an element.
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¯

 ̄   –1

ni1 ni1
⟼½(¯)∞ ∞

Figure 2.8: Clasper interpretation of the Artin representation.

Step 2 Use clasper calculus to re-express this conjugate as an ordered union of comb-claspers with
8 in their support (the order comes from the order on F).

Step 3 The number of parallel copies of a given comb-clasper in this product is the coefficient of the
associated commutator in γpβqpαq.

Explicit examples of computations using this procedure are given in the proof of Theorem 2.3.5 below.

We note that we have a nice correspondence between the family F , of commutators, and the
comb-claspers having 8 in their support, by the following proposition.

Proposition 2.3.4. Let pαq “ pi1 ¨ ¨ ¨ in´18q and pα1q “ pi1 ¨ ¨ ¨ in´1in8q be two comb-claspers. Then
we have the relation:

pα1q „ rpαq,pin8qs “ pαq ¨ pin8q ¨ pαq´1 ¨ pin8q´1.

For example in Figure 2.9 we illustrate the equivalence p12548q „ rp1258q,p48qs.2 51 43 2 51 43∼∞
∞∞∞∞

Figure 2.9: The comb-clasper p12548q is link-homotopic to the commutator rp1258q,p48qs.

Proof. Consider the product of comb-claspers α ¨ pin8q ¨ α´1 ¨ pin8q´1 (as for example on the right-
hand side of Figure 2.9). First, we use move p2q from Proposition 1.1.11 to exchange the 8-th leaves
of pin8q and pαq´1; this move creates an extra comb-clasper, which is exactly pα1q. Now by Remark
1.1.12 we can freely move pα1q and finish exchanging the edges of pαn8q and pαq´1, thus obtaining
the product pαq ¨ pαq´1 ¨ pα1q ¨ pin8q ¨ pin8q´1 „ pα1q.
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In practice, by iterating this proposition, we obtain a correspondence between the commuta-
tors rαs P F (or α P V) and the comb-claspers pα,8q. For example the equivalence p12548q „

rrrp18q,p28qs,p58qs,p48qs corresponds to r1254s “ rrrx1,x2s,x5s,x4s in RFn.

2.3.3 Explicit computations

We now apply the 3-steps procedure of Section 2.3.2, to compute our representation γ for each gener-
ator σi of hBn and each commutator in V. In general, the image of the commutator pi1,i2, ¨ ¨ ¨ ,ilq :“
ϕpri1,i2, ¨ ¨ ¨ ,ilsq P V by the map γpσiq depends on the position of the indices i and i ` 1 in the se-
quence i1, i2, . . . , il, as stated in Theorem 2.3.5 below. Note that a program in Python that computes
explicitly the representation γ is available on [Gra22].

Theorem 2.3.5. For suitable sequences I, J, K in t1, . . . , nuzti, i ` 1u, I ‰ H, we have:

γpσiq :

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

pIq ÞÑ pIq paq

pJ,i,Kq ÞÑ pJ,i ` 1,Kq pbq
pi ` 1,Kq ÞÑ pi,Kq ` pi,i ` 1,Kq pcq
pI,i ` 1,Kq ÞÑ pI,i,Kq ` pI,i,i ` 1,Kq ´ pI,i ` 1,i,Kq pdq

pI,i,J,i ` 1,Kq ÞÑ pI,i ` 1,J,i,Kq peq

pI,i ` 1,J,i,Kq ÞÑ pI,i,J,i ` 1,Kq pfq

pi,J,i ` 1,Kq ÞÑ
ř

J 1ĎJp´1q|J 1|`1pi,J 1,i ` 1,JzJ 1,Kq pgq

where in (g), the sum is over all (possibly empty) subsequences J 1 of J , and J 1 denotes the sequence
obtained from J 1 by reversing the order of its elements, see Example 2.3.6.

Example 2.3.6. If J “ pj1, j2, j3q and K “ H in (g), then γpσiq maps pi,J,i ` 1q to :

´pi,i ` 1,j1,j2,j3q ` pi,j1,i ` 1,j2,j3q ` pi,j2,i ` 1,j1,j3q ` pi,j3,i ` 1,j1,j2q

´pi,j2,j1,i ` 1,j3q ´ pi,j3,j1,i ` 1,j2q ´ pi,j3,j2,i ` 1,j1q ` pi,j3,j2,j1,i ` 1q.

The proof below explains how this follows from the IHX relations of Figure 2.14.

Proof of Theorem 2.3.5. Following the 3-steps procedure of Section 2.3.2, we consider the conjugate
σipα,8qσ´1

i and apply clasper calculus to turn it into a union of comb-claspers.

For paq it is clear that pI,8q commutes with σi, passing over or next to it. The computation of
pbq is given by a simple isotopy of the braid shown in Figure 2.10.

∼(J,i,K,∞) (J,i+1,K,∞)
i i+1 i i+1

∞ ∞

Figure 2.10: Computation of pbq.
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(i,K,∞)∼ (i,i+1)
(i,i+1)-1

i i+1 ∼ i i+1 (i,K,∞)(i+1,K,∞)
i i+1

(i,i+1,K,∞)∞∞∞ ∞
Figure 2.11: Computation of pcq.∼(I,i+1,K,∞) (I,i,K,∞)∼(i,i+1)

(i,i+1)–1

i i+1i i+1i i+1 (I,i,K,∞)∼ i i+1 (I,i,K,∞)(I,i,i+1,K,∞)(I,i+1,i,K,∞)∞ ∞∞
∞
∞
∞∞

Figure 2.12: Computation of pdq.

The proofs of pcq and pdq are similar and are given in Figures 2.11 and 2.12 respectively. There,
the first equivalence is an isotopy, and the second one is given by move (2) from Proposition 1.1.11.
For pdq there is a further step given by an IHX relation.

For peq and pfq we apply the same isotopy as Figure 2.10 on components i and i ` 1, thus
interchanging pI,i,J,i ` 1,Kq and pI,i ` 1,J,i,Kq. Note that we also need a crossing change between
the pi ` 1q-th component and a clasper edge, which is possible according to Remark 1.1.12.

Proving pgq is the last and hardest part and goes in two steps. The first step is illustrated in
Figure 2.13: we proceed as before with an isotopy and a crossing change, then we use move (8) of
Remark 1.1.13. This turns σipi,J,i ` 1,K,8qσ´1

i into a new clasper which is not a comb-clasper.

(J,i,K,∞)
J ∼ i i+1i i+1

J∼ i i+1
J ∞∞∞

Figure 2.13: Turning σipi,J,i ` 1,K,8qσ´1
i into a new clasper.

In the second step, we use IHX relations repeatedly to turn this new clasper into a product of
comb-claspers. This is illustrated in Figure 2.14 where J “ pj1,j2,j3q. We conclude by simplifying
the half-twists with Remark 1.1.14.

Example 2.3.7. We illustrate Theorem 2.3.5 by computing completely and explicitly the represen-
tation γ on the 3-component homotopy braid group hB3. To do so, we set p1q, p2q, p3q, p12q, p13q,
p23q, p123q and p132q to be the generators of V, with the order of Definition 1.2.8, and we compute γ
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i+1 j1
j2
j3

i+1 j1
j2
j3 i+1 j1

j2
j3

i+1 j1
j3j2 i+1 j1

j2 j3 i+1 j1
j3 j2 i+1 j1

j3 j2

j1i+1 j3 j2j2i+1j3 j1 j2i+1j3 j1 j1i+1j3 j2j3i+1j1 j2j3i+1 j1 j2 j3i+1j2 j1 j3i+1j2 j1
Figure 2.14: Iterated IHX relations.

on the Artin generators σ1, σ2:

γpσ1qp1q “ p2q, γpσ2qp1q “ p1q,
γpσ1qp2q “ p1q ` p12q, γpσ2qp2q “ p3q,
γpσ1qp3q “ p3q, γpσ2qp3q “ p2q ` p23q,
γpσ1qp12q “ ´p12q, γpσ2qp12q “ p13q,
γpσ1qp13q “ p23q, γpσ2qp13q “ p12q ` p123q ´ p132q,
γpσ1qp23q “ p13q ` p123q, γpσ2qp23q “ ´p23q,
γpσ1qp123q “ ´p123q, γpσ2qp123q “ p132q,
γpσ1qp132q “ ´p123q ` p132q, γpσ2qp132q “ p123q.

This gives us the following matrices:

γpσ1q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0
1 0 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0
0 0
0 0

0 1 0
0 0 0
0 0 0

´1 0 0
0 0 1
0 1 0

0 0
0 0
0 0

0 0 0
0 0 0

0 0 1
0 0 0

´1 ´1
0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, γpσ2q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0
0 0 1
0 1 0

0 0 0
0 0 0
0 0 0

0 0
0 0
0 0

0 0 0
0 0 0
0 0 1

0 1 0
1 0 0
0 0 ´1

0 0
0 0
0 0

0 0 0
0 0 0

0 1 0
0 ´1 0

0 1
1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The global shape of these matrices was predicted by Theorem 2.3.5. Indeed in general we have
the following.
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Proposition 2.3.8. For β P hBn a homotopy braid, the matrix associated to γpβq in the basis of V,
endowed with the order resulting from Definition 1.2.8, is given by a lower triangular block matrix of
the following form:

¨

˚

˚

˚

˝

B1,1 0 ¨ ¨ ¨ 0
B2,1 B2,2 ¨ ¨ ¨ 0
...

...
. . .

...
Bn,1 Bn,2 ¨ ¨ ¨ Bn,n

˛

‹

‹

‹

‚

where Bi,i is a finite order matrix of size rkpViq “
řn´1

i´1
k!

pk´i`1q! which is the identity when β is pure.

Moreover, B1,1 corresponds to the left action by permutation k ÞÑ π´1pβqpkq, and B2,2 corresponds to
the left action on the set tpk, jqukăj given by:

pk, jq ÞÑ

" `

π´1pβqpkq, π´1pβqpjq
˘

if π´1pβqpkq ă π´1pβqpjq,
´
`

π´1pβqpjq, π´1pβqpkq
˘

if π´1pβqpjq ă π´1pβqpkq.

Proof. The triangular shape is a direct consequence of Theorem 2.3.5. Indeed, the chosen order
respects the weight, and Theorem 2.3.5 shows that γ maps a commutator of weight k to a sum of
commutators of weight at least k. Proposition 1.2.14 gives the size of the square diagonal blocks Bi,i.
The fact that these diagonal blocks are the identity when β is a pure braid may require some more
explanations. We only need to show this result on the generators β “ Ai,j “ 1pi,jq. By Proposition
1.1.11, conjugating pα,8q by pi,jq may only create a clasper pα1,8q of strictly higher degree. This
shows that γpβqpαq “ pαq ` (strictly higher weight commutators) so that Bi,i is the identity. The
block matrix B1,1 describes the action on degree one comb-claspers modulo claspers of higher degree:
the claim follows on an easy verification on the generators σi. Similarly, the claim on the block matrix
B2,2 amounts to focusing on degree two comb-claspers.

Remark 2.3.9. Note that the blocks Bi,1 formed by the first n columns of the matrix encode the images
of γpβqpxiq on all the weight one commutators x1, . . . ,xn of V. In particular, these blocks encode the
image of the homotopy Artin representation ρhpβqpxiq on all the generators x1, . . . ,xn of RFn, and
thus the full image of ρhpβq. Therefore, the n first columns of the matrix completely determine the
full matrix γpβq. Moreover, each block Bi,i encodes the action of γpβq on weight i commutator up to
higher weight commutators in V. At the clasper level, this corresponds to the action on the degree i
comb-claspers of the form pα,8q, up to claspers of higher degrees. According to Proposition 1.1.11,
we can exchange clasper edges with other clasper edges or with strands of braids up to higher-degree
claspers. This implies that each block Bi,i is determined by the permutation πpβq associated with the
braid β P hBn.

2.3.4 Injectivity

In order to prove the injectivity of γ, we need the following preparatory lemma.

Lemma 2.3.10. Let pi1, ¨ ¨ ¨ ,ilq be a comb-clasper. We have

γ
`

1pi1,¨¨¨ ,ilq
˘

pilq “ pilq ´ pi1, ¨ ¨ ¨ ,ilq,

where, on the right-hand side, pi1, ¨ ¨ ¨ ,ilq now denotes the corresponding commutator in V.
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Proof. Following the 3-steps procedure of Section 2.3.2, we consider the product

pi1, ¨ ¨ ¨ ,ilqpil,8qpi1, ¨ ¨ ¨ ,ilq
´1

and re-express it with only comb-claspers with 8 in their support. To do so, as illustrated in Figure
2.15, we apply move p2q from Proposition 1.1.11 on the leaves on the il-th component, which introduces
the comb-clasper pi1, ¨ ¨ ¨ ,il,8q´1, and we simplify pi1, ¨ ¨ ¨ ,ilq and pi1, ¨ ¨ ¨ ,ilq

´1.

i1 il n1 i1 il n1∼∞ ∞∞
Figure 2.15: Proof of Lemma 2.3.10.

We can now state the injectivity of the representation γ from Proposition 2.3.2.

Theorem 2.3.11. The representation γ : hBn Ñ GLpVq is injective.

Proof. Let β P hBn be such that γpβq “ Id. First, Proposition 2.3.8 imposes that β is a pure braid;
indeed the block B1,1 must be the identity, which means that the permutation πpβq is trivial.

According to Theorem 2.1.11 we can consider a normal form for β:

β “
ź

pαqνα ,

for some integers να.
Let I Ă t1, . . . , nu be any sequence of indices. Let also VI be the subspace of V spanned by

commutators with support included in I. We can then define the associated projection pI : V Ñ

VI , and its composition with the restriction of γ to VI , denoted by γI :“ pI ˝ γ|VI
. Note that it

corresponds to keeping only the components with index in I. It is clear using Proposition 1.1.11
that γphPnqpVzVIq Ă VzVI , thus for β1, β2 P hPn we have that γIpβ1β2q “ γIpβ1qγIpβ2q. Moreover
γIp1pαqq “ Id for any comb-clasper pαq with supppαq Ć I. Hence γIpβq “ γIpβIq for βI defined by:

βI “
ź

supppαqĂI

pαqνα .

Now we show by strong induction on the degree of pαq that να “ 0. For the base case, we consider
I of the form I “ ti, lu with i ď l. Using Lemma 2.3.10 we obtain:

γIpβIqplq “ γI

´´

1pilq
¯νil

¯

plq,

“ plq ´ νil ¨ pilq.

36



Since β P kerpγq, we have that γIpβqplq “ plq, and this implies that να “ 0 for any pαq of degree one.
To prove that να “ 0 for any pαq of degree k we take I of length k ` 1 and using the strong induction
hypothesis, we get then:

βI “
ź

supppαq“I

pαqνα .

It is worth noting that for any comb-clasper pαq with support I and any commutator pα1q P VI , we
have γIp1pαqqpα1q “ pα1q. This follows from the 3-steps procedure of Section 2.3.2 and Remark 1.1.12
given that supppαq X supppα1,8q ě 2. Thus thanks to Lemma 2.3.10, denoting by l the largest index
of I we finally obtain:

γIpβIqplq “ plq ´
ÿ

supppαq“I

να ¨ pαq.

Because β P kerpγq, we have that γIpβqplq “ plq, and this implies να “ 0 for any pαq with support I.
Repeating the argument for any I Ă t1, . . . , nu of length k ` 1, we get that να “ 0 for any pαq of
degree k, which concludes the proof.

Corollary 2.3.12. The normal form is unique in hBn, i.e., if β “
ś

pαqνα “
ś

pαqν
1
α are two normal

forms of β for a given order on the set of twisted comb-claspers, then να “ ν 1
α for any pαq.

Proof. The proof follows closely the previous one. As before for a given I Ă t1, . . . , nu we have
γIpβq “ γIpβIq for βI defined by :

βI “
ź

supppαqĂI

pαqνα “
ź

supppαqĂI

pαqν
1
α .

We show again by strong induction on the degree that να “ ν 1
α for all comb-claspers α. The base

case is strictly similar, but for the inductive step one cannot in general write βI with only comb-
claspers with support I. However, by Remark 1.1.12, two comb-claspers pαq and pα1q satisfying
supppαqXsupppα1q ě 2 commute in hBn. Hence, any comb-clasper with support equal to I commutes
with any comb-clasper with support included in I. In particular, we get:

γIpβIqpmq “γI

¨

˝

ź

supppαqĹI

pαqνα

˛

‚˝ γI

¨

˝

ź

supppαq“I

pαqνα

˛

‚pmq

“γI

¨

˝

ź

supppαqĹI

pαqν
1
α

˛

‚˝ γI

¨

˝

ź

supppαq“I

pαqν
1
α

˛

‚pmq.

Since comb-claspers pαq with supppαq Ĺ I have degree ă k´1 where k is the length of I, by induction
hypothesis we have then,

γI

¨

˝

ź

supppαq“I

pαqν
1
α

˛

‚pmq “ γI

¨

˝

ź

supppαq“I

pαqν
1
α

˛

‚pmq.

By Lemma 2.3.10 we compute each term, thus obtaining:

pmq ´
ÿ

supppαq“I

να ¨ pαq “ pmq ´
ÿ

supppαq“I

ν 1
α ¨ pαq.

37



Clearly, the commutator family pαq with support equal to I is a free family in V, so their coefficients
να and ν 1

α on both sides coincide, which complete the induction and the proof.

Remark 2.3.13. Corollary 2.3.12 shows that the numbers να of parallel copies of each comb-clasper
in a normal form are a complete invariant of pure braids up to link-homotopy. We call those numbers
the clasp-numbers. Other well known complete homotopy braid invariants are the Milnor numbers
[Mil54]. As a matter of fact, Milnor numbers can be used, using the techniques of [Yas09], to give
another proof of Corollary 2.3.12. In this thesis we will not try to make explicit the relation between
clasp-numbers and Milnor numbers, since we work solely with clasp-numbers.

2.4 A foretaste of the torsion problem

V. Lin in the Kourovka Notebook [MK14] asks the following: does the braid group Bn have proper
non-abelian torsion-free factor-groups? P. Linnell and T. Schick in [LT07], give a positive answer to
the question, showing that Bn is residually torsion-free nilpotent-by-finite. However their approach
does not provide explicit examples. The homotopy braid groups hBn appear as potential candidate.
Indeed, S. P. Humphries shows in [Hum01] that hBn is torsion-free for n ď 6. In this section we
extend this result to n ď 10, using a new approach based on clasper calculus. Note that we will
show the general result for all n later in the manuscript (see Section 4.3), using the broader context
of homotopy welded braids. In this section, we focus on the study of torsion in the homotopy braid
group, confining ourselves to their classical framework. Later, we will build on the results established
in this section and extend them using the welded context.

2.4.1 Preparation

Throughout this section, we use the notion of normal form (Definition 2.1.8) in the pure homotopy
braid group hPn as a product of comb-claspers. To do this, we fix an order on the set of twisted
comb-claspers, inspired by Definition 1.2.8. For two twisted comb-claspers pαq “ pi1 ¨ ¨ ¨ ilq and pα1q “

pi11 ¨ ¨ ¨ i1l1q we set pαq ď pα1q if:

• degpαq ă degpα1q, or

• degpαq “ degpα1q and i1 . . . il ălex i11 . . . i
1
l.

This order is used implicitly throughout the rest of the section.

Definition 2.4.1. Let us take an integer k the equivalence relation generated by surgery along clasper
of degree k and link-homotopy is called Ck-homotopy. Given β and β1 two braids we use the notation

θ
lh
„
Ck

θ1

to mean that θ and θ1 are Ck-homotopic.

Definition 2.4.2. For two integers k ď n we define a projection map, pk : hPn Ñ hPn that sends a
pure homotopy braid in normal form θ “

ś

pαqναpθq to its image pkpθq “
ś

degpαqďk

pαqναpθq.

38



Proposition 2.4.3. Let θ,θ1 P hPn be two pure homotopy braids, then for all k P N the following
assertions are equivalent:

(i)

θ
lh
„

Ck`1

θ1

(ii)
ναpθq “ ναpθ1q, @ degpαq ď k,

(iii)
pkpθq “ pkpθ1q.

Proof. Let us first show that (i) implies (ii) i.e., for any comb-clasper pαq of degree k or less, we have
ναpθq “ ναpθT q for any clasper T for θ of degree k ` 1. To do so, we drag T by an isotopy along θ to
re-express θT as the product θ1T

1

for some claspers T 1 for 1 of degree k ` 1. By lemma 2.1.7, there
exist a product pα1q ¨ ¨ ¨ pαmq of degree k ` 1 comb-claspers such that 1T

1

“ pα1q ¨ ¨ ¨ pαmq. Therefore,

θT “

´

ź

pαqναpθq
¯

pα1q ¨ ¨ ¨ pαmq,

with
ś

pαqναpθq the normal form of θ. Starting with this expression, we apply the induction from the
proof of Theorem 2.1.11, to get the normal form of θT . Note that in the process, we will only create
claspers of degree greater than k ` 1, which does not change the value of the clasp-numbers να with
degpαq ď k.

Let us now prove that (ii) implies (iii). We consider the normal forms θ “
ś

pαqναpθq and
θ1 “

ś

pαqναpθ1q. It is clear that

pkpθq “
ź

degpαqďk

pαqναpθq “
ź

degpαqďk

pαqναpθ1q “ pkpθ1q

if ναpθq “ ναpθ1q for all comb-claspers pαq with degpαq ď k.
Finally we conclude showing that (iii) implies (i). Since Ck`1-moves allow to remove claspers of

degree strictly higher than k, it is clear that θ is Ck`1-homotopic with its projection pkpθq. So by
transitivity if pkpθq “ pkpθ1q then θ and θ1 are Ck`1-homotopic, and the proof is complete.

Let us fix p a prime number. Let λ P hBp be the homotopy braid illustrated in Figure 2.16, given
by

λ “ σ´1
1 σ´1

2 ¨ ¨ ¨σ´1
p´1.

We denote by τ the cycle pp p ´ 1 ¨ ¨ ¨ 2 1q “ πpλq associated to λ.

1 2 p−2 p−1 p3

Figure 2.16: The homotopy braid λ.
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Definition 2.4.4. Let us denote by O a set of representative of the orbits for the action of τ´1 on
the subsets of t1, ¨ ¨ ¨ ,pu

`

i.e., τ´1pti1, ¨ ¨ ¨ ,iluq “ tτ´1pi1q, ¨ ¨ ¨ ,τ´1pilqu
˘

. We define R as the set of
comb-claspers with support in O and Rk as the subset of degree k comb-claspers in R. Finally, we
order R with the order fixed above.

Example 2.4.5. Let illustrate Definition 2.4.4 with p “ 5. The action of τ´1 :“ p12345q on the
subset of t1,2,3,4,5u contains 7 non-empty orbits. We choose a representative for each of them, thus
obtaining:

O “
␣

t1u,t1,2u,t1,3u,t1,2,3u,t1,2,4u,t1,2,3,4u,t1,2,3,4,5u
(

.

This gives us the following ordered set of comb-claspers:

R “
␣

p12q,p13q,p123q,p124q,p1234q,p1324q,p12345q,p12435q,p13245q,p13425q,p14235q,p14325q
(

.

which is partitioned by the subsets R1 “
␣

p12q,p13q
(

, R2 “
␣

p123q,p124q
(

, R3 “
␣

p1234q,p1324q
(

and
R4 “

␣

p12345q,p12435q,p13245q,p13425q,p14235q,p14325q
(

.

Lemma 2.4.6. For any comb-clasper pαq, not necessarily in R, and any pair pα1q,pα2q P Rk with
k ď p ´ 2 we have the three following relations.

(1) There exist some integers l P N such that,

λlpαqλ´l “
ź

pα1qPRdegpαq

pα1q.

(2) We have,

να1

´

λlpα2qλ´l
¯

“

"

1 if pα1q “ pα2q and l ” 0 rps,
0 if pα1q ‰ pα2q or l ı 0 rps.

(3) For any integer l P N,

ν1,¨¨¨ ,p

´

λlpαqλ´l
¯

“

"

1 if pαq “ p1, ¨ ¨ ¨ ,pq,
0 if pαq ‰ p1, ¨ ¨ ¨ ,pq.

Proof. Let us denote by i the isotopy sending λ1λ´1 to 1, then λpαqλ´1 “ ipαq and supppipαqq “

τ´1psupppαqq, thus for some integer l, the support supp
`

ilpαq
˘

belongs to O. Finally, using move (8)
from Remark 1.1.13 and IHX relations, we turn ilpαq into a product of comb-claspers and we get the
first relation.

For the second one, if l ı 0 then supp
`

ilpα2q
˘

R O and therefore να1

`

ilpα2q
˘

“ 0. Moreover, it is
clear that να1pα2q “ 0 if pα1q ‰ pα2q.

Finally, the first relation implies the third if degpαq ‰ p´ 1. Otherwise, let us consider the global
shape of degree p ´ 1 comb-claspers. If pαq “ p1, ¨ ¨ ¨ ,p ´ 1, ¨ ¨ ¨ ,i,pq with i ă p ´ 1 then by move
(8) from Remark 1.1.13 and IHX relations, ipαq is given by a product of comb-claspers of the form
p1,i ` 1, ¨ ¨ ¨ ,2, ¨ ¨ ¨ , pq as schematically illustrated in Figure 2.17.

If pαq “ p1, ¨ ¨ ¨ ,j, ¨ ¨ ¨ ,i, ¨ ¨ ¨ ,p ´ 1,pq with 1 ă i ă j ă p ´ 1 then by IHX relations, ipαq is given
by a product of comb-claspers of the form p1, ¨ ¨ ¨ ,j ` 1, ¨ ¨ ¨ ,i` 1, ¨ ¨ ¨ , pq or p1, ¨ ¨ ¨ ,i` 1, ¨ ¨ ¨ ,2, ¨ ¨ ¨ ,pq.
This fact is depicted in Figure 2.18.
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1 i+1 p2
Clasper 
calculusi

pi+11 2 1 i+1 p2

Figure 2.17: Computation of λp1, ¨ ¨ ¨ ,p ´ 1, ¨ ¨ ¨ ,i,pqλ´1.

IHX IHXi

pj+1i+11 2 1 i+1 j+1 p2
1 i+1 j+1 p2

1 i+1 j+1 p2

Figure 2.18: Computation of λp1, ¨ ¨ ¨ ,j, ¨ ¨ ¨ ,i, ¨ ¨ ¨ ,p ´ 1,pqλ´1.

Definition 2.4.7. Let θ P hPp be a pure homotopy braid, we say that θ is in nice position if the
normal form of θ satisfies:

ź

pαqναpθq “
ź

pαqPR
pαqναpθq.

In other words we require that ναpθq “ 0 if pαq R R.

Remark 2.4.8. We emphasize that the normal form depends on the order on comb-claspers. Likewise,
the property of being in nice position depends on the chosen order. Additionally, being in nice position
also depends on the chosen set of orbit representatives O.

Lemma 2.4.9. For any pure homotopy braid θ P hPp the product θλ is conjugate to θ˚λ, for some
pure homotopy braid θ˚ P hPp in nice position.

Proof. Suppose that in the normal form of θ, the clasp-number ν0 :“ να0pθq is not zero for some comb-
clasper pα0q R R. Let us further assume that pα0q is of minimal degree, i.e., we have degpα0q ď degpαq

for all pαq R R such that ναpθq ‰ 0. Then according to equality (1) in Lemma 2.4.6, for some integer l,
the conjugate λlpα0qλ´l is a product of comb-claspers in R. We consider and compute the conjugate
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θ1λ of θλ:

θ1λ “

˜

ź

0ďkăl

λkpα0qν0λ´k

¸´1

θλ

˜

ź

0ďkăl

λkpα0qν0λ´k

¸

,

“

˜

ź

0ďkăl

λkpα0qν0λ´k

¸´1

θλ

˜

ź

0ďkăl

λkpα0qν0λ´k

¸

λ´1λ,

“

˜

ź

0ďkăl

λkpα0qν0λ´k

¸´1

θ

˜

ź

0ăkďl

λkpα0qν0λ´k

¸

λ,

“

˜

ź

0ăkăl

λkpα0qν0λ´k

¸´1

pα0q´ν0θ

˜

ź

0ăkăl

λkpα0qν0λ´k

¸

´

λlpα0qν0λ´l
¯

λ.

Now note that, according to Lemma 2.4.6, the conjugates λkpα0qλ´k for 0 ă k ă l can be seen
as products of comb-claspers with same degree as pα0q. Moreover thanks to moves (2) and (4) of
Lemma 1.1.11, two comb-claspers commute up to claspers of higher degree, and by Lemma 2.1.7 we
can assume that these higher degree claspers are also comb-claspers. Then in the previous expression,
up to comb-claspers of degree greater than that of pα0q, we can simplify the terms λkpα0qλ´k for
0 ă k ă l with their inverse to obtain:

θ1 “ pα0q´ν0θ
´

λlpα0qν0λ´l
¯

¨

˝

ź

degpα0qădegpαq

pαq

˛

‚.

Since the factor αν0
0 appears in the normal form θ “

ś

pαqναpθq, we can, using the same argument,
express θ1 as follows:

θ1 “

¨

˝

ź

pαq‰pα0q

pαqναpθq

˛

‚

´

λlpα0qν0λ´l
¯

¨

˝

ź

degpα0qădegpαq

pαq

˛

‚.

We recover the normal form of θ1 using the same method as in proof of Theorem 2.1.11, rearranging
claspers degree by degree. Let us compare the clasp-numbers of θ and θ1. First, if degpαq ă degpα0q

then ναpθq “ ναpθ1q since no claspers of degree lower than pα0q appeared in the procedure. Second,
it is clear that να0pθ1q “ 0. Finally, ναpθ1q “ ναpθq for almost all others comb-claspers pαq of same
degree as pα0q. The only exceptions come from the conjugate λlpα0qν0λ´l and involve comb-claspers
belonging to R.

In summary, for any comb-clasper pαq R R of degree degpαq ď degpα0q the clasp-numbers ναpθ1q

remain unchanged, except for να0pθ1q which is now zero. Hence, by repeating the above argument, we
eventually obtain another conjugate of θλ of the form θ2λ satisfying ναpθ2q “ 0 for any comb-clasper
pαq R R such that degpαq ď degpα0q. Moreover, since above the degree p all claspers are trivial up to
link-homotopy, using the same argument degree by degree, we will finally obtain a conjugate θ˚λ of
θλ with θ˚ in nice position.
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Lemma 2.4.10. Let θ P hPp be in nice position. Then for any comb-clasper pαq P Rk with k ď p´ 2
we have the following relations on the clasp-numbers:

να
`

pθλqp
˘

“ να
`

ppk´1pθqλqp
˘

` ναpθq.

Moreover for the comb-clasper pαq “ p1, ¨ ¨ ¨ ,pq we similarly have:

ν1,¨¨¨ ,p
`

pθλqp
˘

“ ν1,¨¨¨ ,p
`

ppp´2pθqλqp
˘

` p ˆ ν1,¨¨¨ ,ppθq.

Proof. Since we ordered comb-claspers along their degree and since θ is in nice position, for any
k ď p ´ 1, if we set

δk :“
ź

pαqPRk

pαqναpθq,

then θ is Ck`1-homotopic with pk´1pθqδk. This gives us the following relation:

pθλqp “

˜

p´1
ź

l“0

λlθλ´l

¸

λp lh
„

Ck`1

˜

p´1
ź

l“0

´

λlpk´1pθqλ´l
¯´

λlδkλ
´l
¯

¸

λp.

To handle this expression and compute the clasp-number of pθλqp, we need the following claim.

Claim 2.4.11. Let T be a degree k ď p ´ 1 clasper for the trivial braid and let Θ P hPp be a pure
homotopy braid. Let also pαq be a degree k comb-clasper. Then,

(1)

Θ1T
lh
„

Ck`1

1TΘ.

(2)

ναpΘ1T q “ ναpΘq ` ναp1T q.

Statement (1) is already true up to Ck`1-equivalence and follows from [Hab00b, Proposition
5.8]. By Lemma 2.1.7, the clasper T is given by a product of comb-claspers of degree k. Then, by
statement (1), up to Ck`1-homotopy, we can freely reposition these comb-claspers in the normal form
of Θ. Therefore, using the implication (i) implies (ii) of Proposition 2.4.3 we deduce statement (2).

For any integer l, the conjugate λlδkλ
´l is given by a union of claspers of degree k. Then, using

statement (1) of the claim, we shift these claspers to the right in the above expression, and obtain:

pθλqp
lh
„

Ck`1

˜

p´1
ź

l“0

´

λlpk´1pθqλ´l
¯

¸

λp

˜

p´1
ź

l“0

λlδkλ
´l

¸

.

By simplifying the first product with λp, and writing δk as the product
ś

pαqPRk

pαqναpθq, we obtain:

pθλqp
lh
„

Ck`1

`

pk´1pθqλ
˘p

¨

˝

p´1
ź

l“0

ź

pαqPRk

´

λlpαqλ´l
¯ναpθq

˛

‚.
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For any comb-clasper pαq P Rk and any integer l, the conjugate λlpαqλ´l is a clasper of degree
k. Then, for any comb-clasper pα0q P Rk, using statement (2) repetitively we obtain the following
equality:

να0

`

pθλqp
˘

“ να0

´

`

pk´1pθqλ
˘p
¯

`

¨

˝

p´1
ÿ

l“0

ÿ

pαqPRk

ναpθqνα0

´

λlpαqλ´l
¯

˛

‚.

Now, according to relation (2) of Lemma 2.4.6, if k ď p ´ 2, the only non-zero term in the sum is
the factor να0pθqνα0pα0q “ να0pθq. This gives us the first equality of the lemma. Finally if pα0q “

p1, ¨ ¨ ¨ ,pq, by relation (3) of Lemma 2.4.6, for all l, we have να0

`

λlpαqλ´l
˘

“ 1 if pαq “ p1, ¨ ¨ ¨ ,pq and
να0

`

λlp1, ¨ ¨ ¨ ,pqλ´l
˘

“ 0 otherwise. This gives us the second equality of the lemma.

2.4.2 First results

Definition 2.4.12. By induction, we construct a family tθkukďp´2 P hPp of pure homotopy braids as
follows:

$

’

&

’

%

θ0 :“ 1,

θk`1 :“ θk

˜

ś

pαqPRk`1

pαq
´να

`

pθkλqp
˘

¸

.

We emphasize that the construction of θk`1 requires clasp-numbers of pθkλqp, so it is necessary to
compute its normal form.

Remark 2.4.13. Since the order on R corresponds to the one on the set of all comb-claspers, and
because we chose an order by increasing degree, we have that the family tθkukďp´2 P hPp of pure
homotopy braids are in nice position.

Lemma 2.4.14. Let θ P hPp be in nice position. If pθλqp “ 1 then for any k ď p ´ 2, we have

θ
lh
„

Ck`1

θk,

where tθkukďp´2 is defined in Definition 2.4.12.

Proof. Firstly, thanks to piq equivalent to piiq in Proposition 2.4.3 and since θ and θk for any k ď p´2
are in nice position, it is equivalent to show that for any k ď p ´ 2 and any pαq P Rk,

ναpθq “ ναpθkq.

We proceed by induction on the degree k of pαq. Let us start with pαq P R1; by Lemma 2.4.10 we
have

ναpθq “ ´ναpλpq.

Moreover by construction we also have:

ναpθ1q “ ´ναpλpq.

Thus ναpθq “ ναpθ1q for any pαq P R1 and the initialization step is done. For the induction we use
Lemma 2.4.10 again and, for any pαq P Rk with k ď p ´ 2, we get the relation:

ναpθq “ ´να
`

ppk´1pθqλqp
˘

.
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Furthermore, by construction we also see that

ναpθkq “ ´ να
`

pθk´1λqp
˘

,

“ ´ να
`

ppk´1pθk´1qλqp
˘

.

Now by induction and piiq equivalent to piiiq in Proposition 2.4.3, we have that pk´1pθq “ pk´1pθk´1q

then ναpθq “ ναpθkq for any pαq P Rk, which concludes the proof.

Lemma 2.4.15. Let θ P hPp be in nice position. If pθλqp “ 1 then

ν1,¨¨¨ ,p
`

pθp´2λqp
˘

” 0 mod rps,

where θp´2 is defined in Definition 2.4.12.

Proof. Consider first the equality from Lemma 2.4.10:

ν1,¨¨¨ ,pppθλqpq “ p ˆ ν1,¨¨¨ ,ppθq ` ν1,¨¨¨ ,ppppp´2pθqλqpq.

By Lemma 2.4.14, θ and θp´2 are Cp´1-homotopic. Hence by Proposition 2.4.3, we have

pp´2pθq “ pp´2pθp´2q “ θp´2,

thus ν1,¨¨¨ ,ppppp´2pθqλqpq “ ν1,¨¨¨ ,pppθp´2λqpq and the above equality becomes:

ν1,¨¨¨ ,pppθp´2λqpq “ ´p ˆ ν1,¨¨¨ ,ppθq.

The following theorem is well-known, it appears for example in [HL90, Hum01]; we give here a
new proof based on clasper calculus.

Theorem 2.4.16. The pure homotopy braid group hPn is torsion-free for any n P N.

Proof. Let θ P hPn with θ ‰ 1 be a pure homotopy braid and let k P N be the minimal integer such
that θ is not Ck`1-homotopic to the trivial braid

`

i.e., k “ mintl P N | plpθq ‰ 1u
˘

. Then we have:

θm
lh
„

Ck`1

¨

˝

ź

degpαq“k

pαqναpθq

˛

‚

m

lh
„

Ck`1

ź

degpαq“k

pαqmναpθq,

and θm is not Ck`1-homotopic to the trivial braid for any m.

Lemma 2.4.17. If there is torsion in hBn then for some prime number p ď n there exists a torsion
element of order p in hBp.
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Proof. Let β P hBn be a torsion element of prime order p and πpβq its associated permutation. Now,
by Theorem 2.4.16, hPn is torsion-free, thus πpβq ‰ 1 and πpβq is a torsion element of order p in the
symmetric group Sn. More precisely πpβq is a product of p-cycles pp ď nq with disjoint supports. Let
us denote by pi1, ¨ ¨ ¨ ,ipq one of them, and by G the subgroup of hBn generated by elements whose
associated permutation sends the set ti1, ¨ ¨ ¨ ,ipu to itself. The homomorphism ϕ : G Ñ hBp, which
keeps only the strands i1, ¨ ¨ ¨ ,ip, sends β onto a torsion element of order p in hBp and the proof is
complete.

Remark 2.4.18. This lemma also holds for the usual braid group Bn and the proof works the same.

Theorem 2.4.19. There is no torsion in hBn for n ď 10.

Proof. According to Lemma 2.4.17, we only need to show that for any prime number p ď 7 there is
no torsion elements of order p in hBp. But, if such an element exists, it should be a conjugate of
θλ, for some θ P hPp, assumed to be in nice position by Lemma 2.4.9. We developed a program in
Python, as presented in Appendix A and accessible on [Gra22], which constructs the family tθkukďp´2

defined in Definition 2.4.12 for a given prime number p and returns ν1,¨¨¨ ,pppθp´2λqpq. We ran it for
p “ 2,3,5,7 and each time ν1,¨¨¨ ,pppθp´2λqpq “ 1 so the condition of Lemma 2.4.15 does not hold and
hBn is torsion-free for n ď 10.

Remark 2.4.20. It is likely that this method will enable us to extend the result to a larger number of
strands. A more optimized program or greater computing power, would enable us to test the next prime
numbers. However, it seems unlikely that a general result for any number of strands could be obtained
this way. To demonstrate such a result, we need to consider the wider context of welded objects. This
is done in Section 4.3, where we will reapply and adapt the ideas developed here to welded setting.
Nevertheless, we have chosen to keep this first weak version in this manuscript, for the following two
reasons. Firstly, this is the path we followed in our thesis work. We first addressed the torsion problem
as presented in this section, then reconsidered it with welded techniques. Secondly, this illustrates the
strength of welded theory. Indeed, we obtain a complete result while the same reasoning fails in the
classical context.
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Chapter 3

Links up to link-homotopy

In this chapter, we will focus on the study of links up to link-homotopy. More precisely, we will
describe in terms of clasp-numbers variation when two normal forms have link-homotopic closures.

The main purpose of this section is to use clasp-numbers, defined in Remark 2.3.13 above, to
provide an explicit classification of links up to link-homotopy. In this way we recover results of
J.W. Milnor [Mil54] and J. Levine [Lev88] for 4 or less components, and extend them partially for
5 components. To do so we first revisit in terms of claspers the work of N. Habegger and X.-S. Lin
[HL90].

Remark 3.0.1. Y. Kotorii and A. Mizusawa also addressed the question of using clasper theory to
classify 4-component links up to link-homotopy in [KM20] and [KM22]. In their first paper, they
use a different kind of normal form, arranged along a tetrahedron shape, adapted to the 4-component
case. The main difference with the present work, however, is that their result makes direct use of
Levine’s classification. Here we instead reprove the latter using Theorem 3.1.8 and clasper calculus.
Our approach is likely to extend to the general case: as an illustration of this fact, we treat the
algebraically-split 5-component case in Section 3.2.4. Their other paper also also follows a similar
direction. In this work, they ultimately adopted a similar technique and give a complete classification
for links with at most 5 components.

3.1 Habegger–Lin’s work revisited

There is a procedure on braids called closure, that turns a braid into a link in S3. The question is
to determine when two braids have link-homotopic closures. The purpose of this section is to answer
this question by following the work of [HL90] and reinterpreting it in terms of claspers. Let us first
recall from [HL90, Theorem 1.7 & Corollary 1.11] that for any integer n we have the decomposition:

hPn “ hPn´1 ˙ RFn´1

where the first term corresponds to the braid obtained by omitting a given component, and the second
term is the class of this component as an element of the reduced fundamental group of the disk with
n ´ 1 punctures.

In particular, if we iterate this decomposition by omitting the last component recursively, we
obtain the decomposition illustrated in Figure 3.1 (see Convention 3.1.1) :

hPn “ RF1 ˙ ¨ ¨ ¨ ˙ RFn´1.
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Moreover the normal form in hPn with respect to the order of Definition 2.1.9 corresponds to this
decomposition, where each individual factor is in normal form with respect to the order of Definition
1.2.8.

𝓡F1   

𝓡Fn–1

𝓡F2
𝓡F3

1 n2 3 4

Figure 3.1: The Habegger–Lin decomposition in terms of clasper.

Convention 3.1.1. In figures, a box intersecting several strands of 1 represents
a product of claspers whose leaves may or may not intersect those strands, and
are disjoint from all others strands. When each clasper in such a box intersects
a given strand, this is shown by the graphical convention shown on the right (see
Figures 3.1, 3.3, 3.4).

To answer the question, N. Habegger and X.-S. Lin in [HL90] study an action of hP2n on hPn´1 ˙

RFn´1, which leads them to considering certain elementary operations px̄i,x̄iqk, pxi,xiqk and px̄i,xiqk,
whose definition we recall here in terms of claspers.

Definition 3.1.2. Let β P hPn be a pure homotopy braid, and let i, k be two distinct integers in
t1, . . . , nu.

• px̄i,x̄iqkpβq is the pure homotopy braid β∆ ¨ 1pikq´1
, where ∆ and pikq´1 are degree one claspers

as shown in the left-hand side of Figure 3.2.

• pxi,xiqkpβq is the pure homotopy braid 1pikq ¨ β∆1

, where ∆1 and pikq´1 are degree one claspers
as shown in the central part of Figure 3.2.

• px̄i,xiqkpβq is the pure homotopy braid 1pikqβ ¨ 1pikq´1
, where pikq and pikq´1 are degree one

claspers as shown in the right-hand side of Figure 3.2.

Remark 3.1.3. In fact, in [HL90] those operations are only defined for k “ n, but the definitions
extend naturally to any k ‰ i. Moreover, Figure 2.8 in [HL90] does not correspond exactly to Figure
3.2, due to convention choices. Firstly, in [HL90] braids are oriented from bottom to top whereas we
orient them from top to bottom. Secondly, here the basepoint of the second term in the decomposition
hPn “ hPn´1 ˙ RFn´1 is taken above the n ´ 1 punctures, and not under the n ´ 1 punctures as in
[HL90].
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1 nki

¯

Δ
(ik)–1

1 nki

¯ (ik)–1

(ik)1 nki

¯

Δ′(ik)

Figure 3.2: The elementary operations px̄i,x̄iqk, pxi,xiqk, and px̄i,xiqk.

By taking a closer look at the operations px̄i,x̄iqk and px̄i,xiqk and more precisely their effect on
the decomposition hPn “ hPn´1 ˙ RFn´1, N. Habegger and X.-S. Lin come to the following central
definition.

Definition 3.1.4. Let β P hPn, we set β “ θω a decomposition in hPn “ hPn´1 ˙ RFn´1. A
partial conjugate of β is an element of hPn of the form θλωλ´1 for some λ P RFn´1. We speak
of a k-th partial conjugation, or partial conjugation with respect to the k-th component, when the
decomposition hPn “ hPn´1 ˙ RFn´1 is obtained by omitting the k-th component.

The computations in [HL90, p. 413] show that the operations px̄i,x̄iqk and px̄i,xiqk are partial
conjugations. We use clasper calculus to reprove it for the operation px̄i,x̄iqk in Proposition 3.1.5 and
later for the operation px̄i,xiqk in Proposition 3.1.7.

Proposition 3.1.5. Let β be a pure homotopy braid. The operation px̄i,x̄iqkpβq is the k-th partial
conjugation of β by xi. In particular the operations px̄i,x̄iqk with i ‰ k in t1, . . . , nu generate the
partial conjugations.

n

Cµ

w

1 ki

xi

xi–1

1 nki

¯

Δ
(ik)-1C′

Figure 3.3: The k-th partial conjugation by xi.

Proof. We set first β “ θω the decomposition of β in hPn “ hPn´1 ˙ RFn´1 obtained by omitting
the k-th component. Through surgery, we see the factor θ P hPn´1 as a union C of simple claspers
for the trivial braid 1, where the k-th component is disjoint from and passes over all claspers in C.
The factor ω P RFn´1 is given by a union C 1 of simple claspers for the trivial braid, all containing k
in their support. In this setting, the k-th partial conjugation by xi (i.e., β ÞÑ θxiωx

´1
i ) corresponds

to the product CpikqC 1pikq´1 as shown in the left-hand side of Figure 3.3. To prove the proposition
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it suffices to slide the leaf k of pikq upwards by an isotopy (this is possible since C is disjoint from
the k-th component), and slide the leaf i downwards: by moves p2q and p4q from Proposition 1.1.11
this creates claspers with repeats, which by Lemma 1.1.10 are trivial up to link-homotopy.

J. R. Hughes in [Hug05] showed that partial conjugations generate conjugations. We reprove this
result below using clasper calculus.

Proposition 3.1.6. Partial conjugations generate conjugations, in other words operations px̄i,x̄iqk
generate operations px̄i,xiqk for i ‰ k in t1, . . . , nu.

Proof. It suffices to show that partial conjugations generate all conjugations by any comb-clasper
pikq. Let β P hPn, seen as the surgery on 1 along a union of simple claspers denoted C. By the
procedure given below, we decompose C into a product C „ C̃CiCkCi,k such that:

- Ci,k is a union of claspers each having i and k in their support,

- Ci, resp Ck, is a union of claspers, each having i, resp k, in their support, and such that the
k-th, resp i-th, component of 1 is disjoint from and passes over all claspers in Ci, resp Ck,

- C̃ is a product of claspers that are disjoint from and pass under the i-th and k-th components.

n1 ki

Ci,k
Ci

Ck

C
~

Figure 3.4: Decomposition C „ C̃CiCkCi,k.

This decomposition is illustrated in Figure 3.4. To obtain such a decomposition, we first consider
those claspers in C that are disjoint from the i-th and k-th components, and we apply move (3) from
Proposition 1.1.11 to ensure that they all are behind those components. We use moves (2) and (4)
from Proposition 1.1.11 to obtain a decomposition C „ C̃C0 where all claspers in C0 have either i or
k in their support. Next, we consider those claspers in C0 that are disjoint from the k-th component:
we apply move (3) from Proposition 1.1.11 to ensure that they all are behind this component, and
then use again Proposition 1.1.11 to obtain a decomposition C „ C̃CiC1 where all claspers in C1

have k in their support. Finally, by the exact same way we have a decomposition C1 „ CkCi,k with
Ck and Ci,k as desired.

Note that the product pC̃CiqpCkCi,kq corresponds to the decomposition hPn “ hPn´1 ˙ RFn´1

given by omitting the k-th component. We can then apply a k-th partial conjugation by xi to obtain
C̃CipikqCkCi,kpikq´1. We then exchange the relative position of pikq with Ck using moves (2) and
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(4) from Proposition 1.1.11, this creates a union Ki,k of claspers with i and k in their support, such
that:

pikqCk “ CkKi,kpikq. (3.1)

We can then freely (up to link-homotopy) exchange pikq and Ci,k by Remark 1.1.12, thus obtaining
the decomposition C̃CiCkKi,kCi,k. Now we similarly use moves (2) and (4) from Proposition 1.1.11
to exchange Ci and Ck, which creates a union Ri,k of claspers with i and k in their support, such
that:

CiCk “ CkRi,kCi. (3.2)

We obtain in this way the product pC̃CkqpRi,kCiKi,kCi,kq corresponding to the decomposition hPn “

hPn´1˙RFn´1 given by omitting the i-th component. We can then perform an i-th partial conjugation
by xk to obtain C̃CkpikqRi,kCiCi,kKi,kpikq´1 that is link-homotopic to C̃CkpikqRi,kCiCi,kpikq´1Ki,k

according to Remark 1.1.12. Then with further partial conjugations, we relocate Ki,k and we ob-
tain C̃CkpikqKi,kRi,kCiCi,kpikq´1. Finally using equality (3.1) and (3.2) from above we simplify the
expression as follows:

C̃CkKi,kpikqRi,kCiCi,kpikq´1 „ C̃pikqCkRi,kCiCi,kpikq´1 „ C̃pikqCiCkCi,kpikq´1,

and we conclude by exchanging C̃ and pikq via an isotopy, thus obtaining the conjugate pikqCpikq´1.

Proposition 3.1.7. The operations px̄i,x̄iqk generate the operations px̄i,xiqk for i ‰ k in t1, . . . , nu.

Proof. Clearly, from the clasper point of view, the operation pxi,xiqk is the composition of the inverse
of the operation px̄k,x̄kqi with the conjugation by the comb-clasper pikq (i.e., the operation px̄i,xiqk).
Hence we conclude the proof using Proposition 3.1.6.

We state now the main classification theorem of links up to link-homotopy.

Theorem 3.1.8. [HL90, Hug05] Let β, β1 P hPn be two pure homotopy braids. The closures of β
and β1 are link-homotopic, if and only if there exists a sequence β “ β0, β1, . . . , βn “ β1 of elements
of hPn such that βj`1 “ px̄i,x̄iqkpβjq for some i ‰ k in t1, . . . , nu.

Proof. Firstly, [HL90, Theorem 2.13.] states that β and β1 have link-homotopic closures if and only
if there exists a sequence β “ β0, β1, ¨ ¨ ¨ , βn “ β1 of elements of hPn such that βi`1 is a conjugate, or
a partial conjugate of βi. Moreover, as mentioned above (Proposition 3.1.5) the operations px̄i,x̄iqk
generate the partial conjugations, and we conclude the proof using the result from [Hug05] (see
Proposition 3.1.6).

3.2 Link-homotopy classification

This section is dedicated to the explicit classification of links up to link-homotopy. The starting point
of the strategy is Theorem 3.1.8 which allows us to see links up to link-homotopy as pure homotopy
braids up to operations px̄i,x̄iqk with i ‰ k in t1, . . . , nu. Moreover, with Corollary 2.3.12 we show

51



that a braid is uniquely determined by its normal form, encoded by a sequence of integers: the clasp-
numbers. The goal is then to determine how the normal form, or equivalently the clasp-numbers,
vary under operations px̄i,x̄iqk. By using clasper calculus, we recover in this way the link-homotopy
classification results from J. W. Milnor [Mil54] and J. Levine [Lev88] in the case of links with at most
4 components. We then apply these techniques to the 5-component algebraically-split case.

In order to use Corollary 2.3.12, we need to fix an order on the set of twisted comb-claspers. In
the rest of the document, we fix the following order, which is inspired from Definition 1.2.8. For two
twisted comb-claspers pαq “ pi1 ¨ ¨ ¨ ilq and pα1q “ pi11 ¨ ¨ ¨ i1l1q we set pαq ď pα1q if:

• degpαq ă degpα1q, or

• degpαq “ degpα1q and i1 . . . il ălex i11 . . . i
1
l.

This order is used implicitly throughout the rest of the document.

3.2.1 The 2-component case.

As a warm-up, we consider the 2-component case in order to illustrate the techniques of this section.
Let L be a 2-component link, then L can be seen as the closure of a 2-component string-link β.

As mentioned in Remark 2.1.5, up to link-homotopy, string-links correspond to pure braid. Thus by
Corollary 2.3.12 there is a unique integer ν12 such that:

β „ p12qν12 .

So by Theorem 3.1.8 the link-homotopy class of L is uniquely characterized by the integer ν12 modulo
the indeterminacy introduced by the operations px̄2,x̄2q1 and px̄1,x̄1q2.

1 2
º12 (12)–1

1 2
º12Δ

Figure 3.5: Operation px̄2,x̄2q1 on the 2-component normal form.

However, in both cases, |suppp∆qXsuppp12q| “ 2 as illustrated in the right-hand side of Figure 3.5
for px̄2,x̄2q1. Thus, Remark 1.1.12 shows that px̄2,x̄2q1 and px̄1,x̄1q2 leave the normal form unchanged,
and the clasp-number ν12 is therefore a complete link-homotopy invariant for 2-component links. Note
that this number is in fact the linking number between the two components, which is well known to
classify 2-component links up to link-homotopy.

3.2.2 The 3-component case

Let L be a 3-component link seen as the closure of the normal form:

p12qν12p13qν13p23qν23p123qν123 ,

52



1 32
º123
º23
º12
º13

1 32

º123
º23º13

(12)–1

Δ
º13

Figure 3.6: Operation px̄2,x̄2q1 on the 3-component normal form.

for some integers ν12, ν13, ν23 and ν123. See the left-hand side of Figure 3.6.

We now investigate how these numbers vary under the operations px̄i,x̄iqk for i ‰ k P t1, 2, 3u;
we apply for example px̄2,x̄2q1. By Definition 3.1.2 this corresponds to introducing the claspers ∆
and p12q´1 as shown in the right-hand side of Figure 3.6, which we then put in normal form. This is
done by sliding the 1-leaf of ∆ along the first component to obtain p12q and simplify it with p12q´1.
By move p2q from Proposition 1.1.11, this sliding creates new claspers, but by Lemma 1.1.10, the
only claspers that do not vanish up to link-homotopy, are those created when ∆ crosses the leaves
of p13qν13 : more precisely, in this process, ν13 copies of t1, 2, 3u-supported claspers appear. Finally,
according to Remark 1.1.12 we can rearrange these new claspers and the normal form becomes

p12qν12p13qν13p23qν23p123qν123`ν13 .

The other operations px̄i,x̄iqk act in a similar way, by changing ν123 by a multiple of ν12, ν13 or ν23.
Summarizing, we have shown that

ν12, ν13, ν23 and ν123 mod gcdpν12, ν13, ν23q,

form a set of complete invariants for 3-component links up to link-homotopy.

Note that we recover here Milnor invariants µ12, µ13, µ23 and µ123, that we already knew to be
complete link-homotopy invariants for 3-component links (see [Mil54]).

3.2.3 The 4-component case

Before proceeding with the link-homotopy classification of 4-component links, we need the following
technical result.

Lemma 3.2.1. Let C be a union of simple claspers for the trivial n-component braid 1, and let
l P t1, . . . , nu. Let T be a clasper in C with l in its support and let CT,l “

Ť

T 1 be the union of all
claspers T 1 in C such that supppT 1q X supppT q “ tlu. Suppose that an l-leaf f of T is disjoint from
a 3-ball B containing all l-leaves of CT,l. Then the closure of 1C is link-homotopic to the closure of
1C

1

where C 1 is obtained from C by passing f across the ball B as shown in Figure 3.7.
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Proof. First the result is clear if T has several l-leaves, since by Lemma 1.1.10, T vanishes up to
link-homotopy. By Remark 1.1.12 the edges of any clasper in CT,l can freely cross those of T but f
and the l-leaves of claspers in CT,l cannot be freely exchanged. However, according to Remark 1.1.12
again, the leaf f can be freely exchanged with any l-leaf of claspers in CzCT,l, since their support
contain at least some k ‰ l which is in supppT q. By using the closure we can thus slide f in the other
direction, using the closure of 1, and bypass the l-leaves of claspers in CT,l all gathered in B.

l

B

CT,l
f T

l

B

CT,l
f

T∼
Figure 3.7: Illustration of Lemma 3.2.1

Although the assumption of Lemma 3.2.1 may seem restrictive, it turns out to be naturally satisfied
for normal forms. For instance, we have the following consequence.

Proposition 3.2.2. Let C “ pα1qν1 ¨ ¨ ¨ pαmqνm be the normal form of a pure homotopy n-component
braid and let pαq be a degree n´2 comb-clasper. Then C and C 1 “ pα1qν1 ¨ ¨ ¨ pαqpαiq

νipαq´1 ¨ ¨ ¨ pαmqνm

have link-homotopic closures, for any i P t1, . . . , mu.

Proof. We first consider the product pα1qν1 ¨ ¨ ¨ pαiq
νipαqpαq´1 ¨ ¨ ¨ pαmqνm where we just insert the

trivial term pαqpαq´1 in C. We next want to exchange pαq and pαiq
νi . This is allowed if |supppαq X

supppαiq| ě 2 by Remark 1.1.12, but if supppαq X supppαiq “ tlu we can only realize crossing changes
between the edges of pαq and pαiq

νi (see Remark 1.1.12). However in that case pαiq is a comb-clasper
of support tk, lu with k the only component not in the support of pαq, thus we can apply Lemma
3.2.1 to the l-leaf of pαq, and bypass the block pαiq

νi (corresponding to CT in Lemma 3.2.1).

Let us now return to the classification of links up to link-homotopy and let L be a 4-component
link seen as the closure of the normal form:

p12qν12p13qν13p14qν14p23qν23p24qν24p34qν34p123qν123p124qν124p134qν134p234qν234p1234qν1234p1324qν1324 ,

for some integers ν12, ν13, ν14, ν23, ν24, ν34, ν123, ν124, ν134, ν234, ν1234, and ν1324. See Figure 3.8.
We can apply Proposition 3.2.2 to the degree 2 comb-claspers p123q, p124q, p134q and p234q. For

example, applying Proposition 3.2.2 to pαq “ p234q and pαiq “ p12q, we get that L is link-homotopic
to the closure of:

p234qp12qν12p234q´1p13qν13p14qν14p23qν23p24qν24p34qν34p123qν123

p124qν124p134qν134p234qν234p1234qν1234p1324qν1324 .
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1 32 4

º123
º124
º234

º34
º23
º  12
º14º13
º24

º1324
º1234
º134

Figure 3.8: Normal form for 4 components.

By clasper calculus (Proposition 1.1.11 and Remark 1.1.12), we have that p234qp12qν12p234q´1 is link-
homotopic to p12qν12p1234qν12 . The product of claspers p1234qν12 can be freely homotoped by Remark
1.1.12, thus producing the normal form

p12qν12p13qν13p14qν14p23qν23p24qν24p34qν34p123qν123p124qν124p134qν134p234qν234p1234qν1234`ν12p1324qν1324 ,

whose closure is link-homotopic to L. This is recorded in the first row of Table 3.1, which records all
possible transformations on clasp-numbers obtained with Proposition 3.2.2. Each row represents a
possible transformation, where the entry in the column να represents the variation of the clasp-number
να. Note that an empty cell means that the corresponding clasp-number remains unchanged. Note
also that, we only need two columns because for the comb-claspers of degree 1 or 2 the associated
clasp-numbers remain unchanged.

ν1234 ν1324

ν12
ν34

ν13
ν24

ν14 -ν14
ν23 -ν23

Table 3.1: Some clasp-numbers variation with same closures.
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Let us now describe how operations px̄i,x̄iqk for i ‰ k in t1, . . . , 4u affect clasp-numbers. As
for the 3-component case, px̄i,x̄iqk corresponds to sliding the i-leaf of a simple clasper of support
ti, ju (denoted ∆ in Definition 3.1.2) along the i-th component. Along the way ∆ encounters leaves
and edges of other claspers, that can be crossed as described by moves p2q and p4q from Proposition
1.1.11. In doing so, claspers of degree 2 and 3 may appear, that we must reposition in the normal
form. Those of degree 3 commute with any clasper by Remark 1.1.12, but since they may not be
comb-claspers we have to use IHX relations (Proposition 1.1.15) to turn them into comb-claspers.
Claspers of degree 2 can be repositioned using Remark 1.1.12 and Lemma 3.2.1 (the fact that Lemma
3.2.1 applies is clear according to the shape of the normal form, where factors are stacked).

We detail as an example operation px̄4,x̄4q2. In that case ∆ has support t2, 4u and we slide its
2-leaf along the 2nd component. According to Remark 1.1.12, ∆ can freely cross the edges of claspers
with 4 in their support and the 2-leaves of claspers containing 2 and 4 in their support. Thus, we
only consider the claspers that appear when ∆ meets the edges of p13qν13 and the 2-leaves of p12qν12 ,
p23qν23 and p123qν123 . Once repositioned we obtain in order the factors p1324qν13 , p124qν12 , p234q´ν23

and p1324q´ν123 . However according to Table 3.1, p1324qν13 can be removed up to link-homotopy and
thus we get the following normal form:

p12qν12p13qν13p14qν14p23qν23p24qν24p34qν34p123qν123p124qν124`ν12

p134qν134p234qν234´ν23p1234qν1234p1324qν1324´ν123 .

In the same way, we compute all operations px̄i,x̄iqk and record them in Table 3.2. The entry
in row px̄i,x̄iqk represents the corresponding variation. As in Table 3.1, an empty cell means that
px̄i,x̄iqk does not change the clasp-number. Moreover the νik columns are omitted because they remain
unchanged by any operations.

ν123 ν124 ν134 ν234 ν1234 ν1324

px̄2,x̄2q1 ν13 ν14 ν134
px̄3,x̄3q1 ´ν12 ν14 ν124
px̄4,x̄4q1 ´ν12 ´ν13 ´ν123 ν123

px̄1,x̄1q2 ´ν23 ´ν24 ´ν234
px̄3,x̄3q2 ν12 ν24 ν124 ´ν124
px̄4,x̄4q2 ν12 ´ν23 ´ν123

px̄1,x̄1q3 ν23 ´ν34 ν234
px̄2,x̄2q3 ´ν13 ´ν34 ´ν134 ν134
px̄4,x̄4q3 ν13 ν23 ν123

px̄1,x̄1q4 ν24 ν34 ν234 ´ν234
px̄2,x̄2q4 ´ν14 ν34 ´ν134
px̄3,x̄3q4 ´ν14 ´ν24 ´ν124

Table 3.2: Clasp-numbers variations under operations px̄i,x̄iqk.

There are however algebraic redundancies in Table 3.2, i.e., some lines are combinations of other
lines, which means that some operation px̄i,x̄iqk generate the others. So we can keep only these ones
(or their opposite), which we call ‘generating’ operations, and which we record in Table 3.3.
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ν123 ν124 ν134 ν234 ν1234 ν1324

ν13 ν14 ν134
´ν12 ν14 ν124
ν23 ν24 ν234

´ν12 ν23 ν123
ν23 ´ν34 ν234

ν13 ν23 ν123
ν14 ´ν34 ν134

ν14 ν24 ν124

Table 3.3: Clasp-numbers variations under generating operations.

Finally, with Table 3.3 we reinterpret the homotopy classification of 4-component links as follows.

Theorem 3.2.3. Two 4-component links, seen as closures of braids in normal forms (see Figure 3.8),
are link-homotopic if and only if their clasp-numbers are related by a sequence of transformations from
Table 3.3.

Remark 3.2.4. Table 3.1 was only used here as a tool to simplify the computations summarized in
Table 3.2. We stress that Table 3.3 alone suffices to generate Table 3.1 and Table 3.2. In particular,
Table 3.1 is obtained by ‘commuting’ the rows of Table 3.3. More precisely let us denote by rRisk the
variation associated to the i-th row of Table k. Let us also denote by rRi,Rjsk the ‘commutator of
rows i and j’ from Table k, i.e., the variation obtained by applying the i-th row of Table k, then the
j-th, then the opposite of the i-th and finally the opposite of the j-th. Thus, Table 3.3 generates the
rows of Table 3.1 as follows:

rR1s3.1 “ rR6,R2s3.3, rR2s3.1 “ rR1,R5s3.3, rR3s3.1 “ rR6,R7s3.3,
rR4s3.1 “ rR3,R2s3.3, rR5s3.1 “ rR2,R1s3.3, rR6s3.1 “ rR5,R6s3.3.

Note that J. Levine in [Lev88] already proved a similar result. The purpose of this paragraph is
to explain the correspondence between the two approaches. The strategy adopted in [Lev88] consists
in fixing the first three components and let the fourth one carry the information of the link-homotopy
indeterminacy. J. Levine used four integers k, l, r, d to describe a normal form for the first three
components, and integers ei with i P t1, . . . , 8u to describe the information of the last component.
Finally, in [Lev88, Table3] he gives a list of all possible transformations on ei-numbers that do not
change the link-homotopy class. Fixing the last component corresponds in our setting to fixing
the clasp-number ν123: this is why [Lev88, Table 3] has one less column than Tables 3.2 and 3.3.
Moreover, the five rows of [Lev88, Table 3] correspond to px̄3,x̄3q

´1
1 ,px̄4,x̄4q

´1
2 ,px̄1,x̄1q4, px̄3,x̄3q4 and

px̄1,x̄1q
´c
2 ˝ px̄3,x̄3q

´a
1 ˝ px̄2,x̄2q

´b
1 , respectively, and Levine’s integers correspond to clasp-numbers as

follows.

k r l d e1 e2 e3 e4 e5 e6 e7 e8
ν12 ν13 ν23 ν123 ν14 ν24 ν34 ν124 ν134 ν234 ´ν1324 ´ν1234
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3.2.4 The 5-component algebraically-split case

This section is dedicated to the study of 5-components algebraically-split links. These are links such
that the linking number is zero for any pair of components. Equivalently, algebraically-split links are
given by the closure of a normal form with trivial clasp-numbers for any degree one comb-clasper.

The following proposition is the algebraically-split version of Proposition 3.2.2. The proof is
essentially the same and is left to the reader.

Proposition 3.2.5. Let C “ pα1qν1 ¨ ¨ ¨ pαmqνm be a normal form of a pure homotopy n-component
braid with νi “ 0 for any pαiq of degree one, and let pαq be a degree n ´ 3 comb-clasper. Then C and
C 1 “ pα1qν1 ¨ ¨ ¨ pαqpαiq

νipαq´1 ¨ ¨ ¨ pαmqνm have link-homotopic closures, for any i P t1, . . . , mu.

Now, let L be a 5-component algebraically-split link seen as the closure of the normal form:

C “p123qν123p124qν124p125qν125p134qν134p135qν135p145qν145p234qν234p235qν235p245qν245p345qν345

p1234qν1234p1235qν1235p1245qν1245p1324qν1324p1325qν1325p1345qν1345p1425qν1425p1435qν1435p2345qν2345

p2435qν2435p12345qν12345p12435qν12435p13245qν13245p13425qν13425p14235qν14235p14325qν14325 .

The strategy is similar to the 4-component case. We see links as braid closures, and with Theorem
2.3.12 we know that any braid is uniquely determined up to link-homotopy by a set of clasp-numbers
tναu. In this case, the algebraically-split condition results in the vanishing of clasp-numbers νij (i.e.,
να “ 0 for all pαq of degree 1). Now, as mentioned by Theorem 3.1.8, the classification of links up
to link-homotopy reduces to determining how operations px̄i,x̄iqk for i ‰ k in t1, . . . , 5u affect the
clasp-numbers.

We first use Proposition 3.2.5 to simplify the upcoming computations. In that case Proposition
3.2.5 concerns degree 2 comb-claspers p123q, p124q, p125q, p134q, p135q, p145q, p234q, p235q, p245q and
p345q. We record in Table 3.4 all possible transformations on clasp-numbers obtained with Proposition
3.2.5. As before, each row represents a possible transformation, where the entry in the column να
represents the variation of the clasp-number να, and an empty cell means that the corresponding
clasp-number remains unchanged. Note also that we only need columns corresponding to degree 4
comb-claspers because the other clasp-numbers remain unchanged.

Finally, we compute the effect of all operations px̄i,x̄iqk using Definition 3.1.2 and Table 3.4, and
simplify the results keeping only the ‘generating’ operations, as in the 4-component case. We record
the corresponding clasp-number variations in Table 3.5. As for the 4-component case, Table 3.5
contains all the data for the classification of 5-component algebraically-split links. In other words we
obtain the following classification result.

Theorem 3.2.6. Two 5-component algebraically-split links, seen as closures of braids in normal
forms, are link-homotopic if and only if their clasp-numbers are related by a sequence of transforma-
tions from Table 3.5.

Remark 3.2.7. Just as in Remark 3.2.4, only Table 3.5 is needed here as it generates Table 3.4.
With the same notations as in Remark 3.2.4 and with the additional notation ‘˝’ for composition, we
get:
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ν12345 ν12435 ν13245 ν13425 ν14235 ν14325

ν123
ν123

ν124
ν124

ν125 ´ν125
ν125 ´ν125
ν134

ν134
ν135 ´ν135

ν135 ´ν135
ν145 ´ν145

ν145 ´ν145
ν234 ´ν234 ´ν234 ν234

ν234 ´ν234 ν234 ´ν234
ν235

ν235
ν245

ν245
ν345

ν345

Table 3.4: Some clasp-numbers variations with same closure.
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ν1234 ν1235 ν1245 ν1324 ν1325 ν1345 ν1425 ν1435 ν2345 ν2435 ν12345 ν12435 ν13245 ν13425 ν14235 ν14325

ν134 ν135 ν145 ν1345 ν1435
ν124 ν125 ν145 ν1245 ν1425

´ν123 ν123 ν125 ν135 ν1235 ν1325
ν234 ν235 ν245 ν2345 ν2435

ν125 ´ν123 ´ν125 ν235 ν1235 ν1325 ´ν1325 ´ν1235
ν123 ν124 ν234 ´ν234 ν1234 ` ν1324 ´ν1234

ν234 ν235 ´ν345 ν2345 ` ν2435 ´ν2435
ν134 ν135 ´ν134 ´ν135 ν345 ν1345 ´ν1345 ν1435 ´ν1435

´ν123 ν134 ν234 ν1234 ` ν1324 ´ν1324
ν234 ´ν234 ν245 ν345 ν2345 ` ν2435 ´ν2345
ν124 ν145 ´ν145 ν245 ´ν245 ν1245 ´ν1245 ν1425 ´ν1425

ν124 ν134 ν234 ν1234 ν1324
ν135 ν145 ´ν345 ν345 ν1345 ν1435

ν125 ν145 ν245 ν1245 ν1425
ν125 ν135 ν235 ν1235 ν1325

Table 3.5: Clasp-numbers variations under generating operations in the 5-component algebraically-
split case.

rR1s3.4 “ rR12,R3s3.5 ˝ rR5,R6s3.5, rR2s3.4 “ rR6,R5s3.5, rR3s3.4 “ rR11,R12s3.5,
rR4s3.4 “ rR6,R14s3.5, rR5s3.4 “ rR5,R11s3.5 ˝ rR3,R11s3.5, rR6s3.4 “ rR3,R11s3.5,
rR7s3.4 “ rR12,R13s3.5, rR8s3.4 “ rR8,R9s3.5, rR9s3.4 “ rR1,R5s3.5,
rR10s3.4 “ rR13,R5s3.5, rR11s3.4 “ rR2,R1s3.5, rR12s3.4 “ rR13,R14s3.5,
rR13s3.4 “ rR6,R4s3.5, rR14s3.4 “ rR7,R9s3.5, rR15s3.4 “ rR5,R10s3.5,
rR16s3.4 “ rR7,R3s3.5, rR17s3.4 “ rR4,R2s3.5, rR18s3.4 “ rR10,R11s3.5,
rR19s3.4 “ rR1,R7s3.5, rR20s3.4 “ rR10,R1s3.5.

Note that in a recent paper [KM22], Kotorii and Mizusawa, with techniques similar to the one pre-
sented in this section, have given a complete classification of 5-component links up to link-homotopy.
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Chapter 4

Welded objects

This chapter deals with welded objects. The structure is very similar to that of Chapters 1 and 2.
First, general definitions are given in Section 4.1, including a review of arrow calculus, which is the
welded analogue of clasper calculus, developed by J.-B. Meilhan and A. Yasuhara in [MY19]. Section
4.2 is devoted to the homotopy welded braids group. We give in Theorem 4.2.11 a group presentation
inspired by that of J. Darné [Dar23]. We then extend the representation of Section 2.3 to the welded
framework. Finally, Section 4.3 takes up the elements developed in Section 2.4 from the welded point
of view. We end with the main result of this thesis, namely Theorem 4.3.8: the homotopy braid group
is torsion-free for any number of strands.

4.1 General definitions

4.1.1 Virtual diagrams

This section focuses on the study of welded tangles, a generalization of the usual tangles previously
studied.

Definition 4.1.1. An n-component virtual tangle diagram is the image of a smooth immersion
of an n-component, ordered, and oriented 1–manifold (a disjoint union of circles and intervals) in
the disk. We require the embedding to be proper, meaning that the boundary of the 1-manifold must
be sent to the boundary of the disk. Additionally, we require the singularities to consist of a finite
number of transverse double points labeled either as a classical crossing or as a virtual crossing, as
illustrated in Figure 4.1.

Figure 4.1: A classical and a virtual crossing.

In what follows, we will often simply say ‘diagram’ instead of virtual tangle diagram.

Definition 4.1.2. An n-componentwelded tangle is the equivalence class of an n-component virtual
tangle diagram under welded isotopies given by:
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• planar isotopies,

• classical Reidemeister moves,

• virtual Reidemeister moves, which are the exact analogues of the classical ones with all classical
crossings replaced by virtual ones,

• mixed Reidemeister move, as shown on the left-hand side of Figure 4.2,

• OC moves (for overcrossings commute), as shown in the central part of Figure 4.2.

UCOCMixed

Figure 4.2: The Mixed, OC and UC moves on virtual diagrams.

Remark 4.1.3. Recall that there is a ‘forbidden’ local moves, called UC moves (for undercrossings
commute), illustrated on the right-hand side of Figure 4.2. Recall also that the notion of virtual
tangle arises by deleting the OC move from Definition 4.1.2 [Kau99, GPV00].

Remark 4.1.4. It is shown in [Kau99] that the set of tangles up to isotopy is injected into the set
of welded tangle up to welded isotopy. In other words, if two classical tangles are related by welded
isotopy, then they are also related by classical isotopy.

As in the context of classical knot theory, we can study the notion of link-homotopy, where
each individual component is allowed to cross itself. In the welded context, however, it turns out that
the right analogue of this relation is generated by the self-virtualization move, where a crossing
involving two strands of the same component can be replaced by a virtual one or vice versa, as
depicted in Figure 4.3 see [ABMW17a]. In what follows, we will study this equivalence relation and
call it homotopy ; we use the same notation as in the classical case ‘„’ to denote this equivalence
relation.

Same
component ∼

Figure 4.3: A self-virtualization move.

4.1.2 Arrow calculus

Arrow calculus has been developed by J.-B. Meilhan and A. Yasuhara in [MY19]. It is the analogue
of claspers calculus in the welded context. In particular, it turns out to be a powerful tool to deal
with homotopy. In the following we define and recall the homotopy arrow calculus.
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Definition 4.1.5. [MY19, Definition 3.1] A w–tree for a diagram D is a connected uni-trivalent
tree T , immersed in the plane of the diagram such that

• The trivalent vertices of T are pairwise disjoint and disjoint from D.

• The univalent vertices of T are pairwise disjoint and are contained in Dztcrossings of Du.

• All edges of T are oriented, such that each trivalent vertex has two ingoing edges and one
outgoing edge.

• We allow virtual crossings between edges of T , and between D and edges of T , but classical
crossings involving T are not allowed.

• Each edge of T is assigned a number (possibly zero) of decorations, called twists, which are
disjoint from all vertices and crossings.

A w–tree with a single edge is called a w–arrow.

The unique univalent vertex with an ingoing edge is called the head of the w-tree. By graphic
convention, it is represented by an arrow on the figures. The other univalent vertices are called tails.
When we do not need to distinguish between tails and head, we simply call all univalent vertices,
endpoints. In the figures, portions of the diagram are represented by thick black lines and w-trees
edges by thin blue lines. Finally, twists are represented graphically by big red dots ‚.

Definition 4.1.6. Let T be a w-tree for a diagram D. We define the degree of T , denoted by
degpT q, as its number of tails. The support of T , denoted by supppT q, is defined to be the set of the
components of D that intersect the endpoints of T . The roots of T , denoted by rootspT q, is defined
to be the set of the components of D that intersect the tails of T . We will often consider the number
of the components rather than the components themselves.

Definition 4.1.7. We say that a w-tree for a diagram D has repeats if it intersects a component
of D in at least two endpoints. Otherwise, we say that the w-tree is nonrepeated.

Given a disjoint union of w-trees F for a diagram D, there is a procedure called surgery detailed
in [MY19] to construct a new diagram denoted DF . We illustrate on Figure 4.4 the surgery along a
w-arrow. Note that the orientation of the portion of diagram containing the tail, needs to be specified

Figure 4.4: Surgery on a w-arrow.

to define the surgery move. In the case where a w-arrow contains some twist, surgery introduces a
virtual crossing, as shown on the left-hand side of Figure 4.5. Moreover, if the edge of the w-arrow
intersects the diagram D, or an edge of another w-arrow, then the surgery introduces virtual crossings
as indicated on the right-hand side of Figure 4.5.
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Figure 4.5: Surgeries near a twist and crossings.

Now if F contains some w-trees with degree higher than one, we first apply the expanding rule
shown on Figure 4.61 at each trivalent vertex: this breaks up F into a union of w-arrows, on which
we can perform surgery.

Figure 4.6: The expanding rule.

We describe in the following the homotopy arrow calculus. It refers to the set of operations on
unions of welded tangles with some w-trees, which enable link-homotopic surgery results. These
operations are developed in [MY19], and we summarize them in the next lemmas.

Lemma 4.1.8. [MY19, Lemma 9.2 ] Surgery along a repeated w-tree does not change the homotopy
class of a diagram.

Proposition 4.1.9. [MY19] We have the following homotopy equivalences.

• Arrow isotopy. Virtual Reidemeister moves involving edges of w-trees and/or strands of dia-
grams, together with the following local moves:∼ ∼ ∼∼ ∼ ∼

• Head/Tail Reversal. Changing the side of the strand from which an endpoint of a w-tree is
attached has the following effect.

• Inverse. Two parallel copies of a w-tree which differ only by one twist, can be deleted up to
homotopy.

1Here and in the following figures, we use the diagrammatic convention adopted in [MY19, Convention 5.1].
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∼ ∼
∅∼

Until the end of the section, T and S will denote w-trees for a given diagram D. As for clasper
calculus, we use the notation T „ S to mean that DT „ DS . The next proposition describes how to
handle twists in the homotopy arrow calculus.

Proposition 4.1.10. [MY19] We have the following homotopy equivalences (illustrated in Figure
4.7).

(1) If T is obtained from S by removing two consecutive twists on an edge then T „ S.

(2) If T is obtained from S by moving a twist across a crossing involving either an edge of a w-tree
or a strand of a diagram then T „ S.

(3) If T is obtained from S by moving a twist across a trivalent vertex then T „ S.

(4) If T and S are identical outside a neighborhood of trivalent vertex, and if in this neighborhood
T and S are as depicted in (4) from Figure 4.7, then T „ S.∼(2)∼(1) ∼(2)∼(3) ∼(4)

T S T S
T S

T S T S

Figure 4.7: How to deal with twists in homotopy arrow calculus.

The following lemma describes how to exchange endpoints up to homotopy.

Lemma 4.1.11. [MY19] We have the following homotopy equivalences (illustrated in Figure 4.8).

(5) Tails exchange. If T and S have two adjacent tails and if T 1 Y S1 is obtained from T Y S by
exchanging these tails, then T Y S „ T 1 Y S1.

(6) Heads exchange. If the heads of T and S are adjacent and if T 1 Y S1 is obtained from T Y S by
exchanging these heads as depicted in (6) Figure 4.8, then T Y S „ T 1 Y S1 Y T̃ , where T̃ is as
shown in the figure.

(7) Head/Tail exchange. If the head of T is adjacent to a tail of S and if T 1 Y S1 is obtained from
T YS by exchanging these endpoints as depicted in (7) from Figure 4.8, then T YS „ T 1 YS1 YT̃ ,
where T̃ is as shown in the figure.
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∼(7)∼(6)∼(5)T  T        ′
S S    ′ T

S

T

S

T     ′
S′

 T        ′
S′ T

~
T
~

Figure 4.8: How to exchange endpoints in homotopy arrow calculus.

Finally, we have an arrow calculus version of the IHX relation.

Proposition 4.1.12. [MY19, Lemma 7.14 ] Let TI , TH , TX be three parallel copies of a given w-tree
that coincide everywhere outside a disk, where they are as shown in Figure 4.9. Then TI YTH YTX „

H. We say that TI , TH and TX verify the IHX relation.

T
H

T
X

T
I

Figure 4.9: The IHX relation for w-trees.

4.2 Welded braids

This section is dedicated to homotopy welded braids. Our approach is similar to the one followed in
Chapter 2 for classical braids. We will first define comb-trees which are the analogue of comb-claspers
in the welded case. Then we study and improve presentations of welded braid groups using arrow
calculus. We also show that the representation defined in Section 2.3 extends well in the welded
context. Finally, we return to and fully solve the torsion problem addressed in Section 2.4.

4.2.1 Comb-trees

Let us take n fixed points, in the unit interval r0,1s, denoted by p1 ă p2 ă ¨ ¨ ¨ ă pn.

Definition 4.2.1. An n-component virtual braid diagram β “ pβ1, . . . , βnq is the image of a
immersion

pβ1, . . . , βnq :
ğ

iďn

r0,1s Ñ r0,1s ˆ r0,1s

such that, for some permutation of t1, . . . , nu associated to β, denoted πpβq, we have βip0q “ ppi, 0q

and βip1q “ ppπpβqpiq, 1q for any i. We require the singularities to be a finite number of transverse
double points, which are labeled either as classical crossings or as virtual crossings. Additionally, we
require the immersion to be monotonic, which means that βiptq P r0,1s ˆ ttu for any t P r0, 1s and any
i. We call the image of βi the i-th component of β. We say that a virtual braid diagram β is pure
if its associated permutation πpβq is the identity.
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The set of virtual braid diagrams up to welded isotopy (resp. homotopy), equipped with the
stacking operation, forms a group: the welded braid group denoted by WBn (resp. the homotopy
welded braid group, denoted by hWBn). Elements of hWBn are called homotopy welded braids.
The set of pure braids up to welded isotopy (resp. homotopy) forms a subgroup of WBn (resp.
hWBn) denoted by WPn (resp. hWPn). Note that we do not require welded isotopy or homotopy to
preserve the monotonic property during the deformation. As in the classical case (Remark 2.1.5), we
will regard homotopy welded braid as welded tangles up to homotopy.

Proposition 4.2.2. [ABMW17a, Theorem 3.10] Any welded string-link is link-homotopic to a pure
welded braid, and if two pure welded braids are link-homotopic as string-links, then they also are as
braids.

We next introduce comb-trees and their associated notation. Let I “ pi0, i1, . . . , ilq be a sequence
of nonrepeated indices in t1, . . . , nu such that i1 ă ij for any 2 ď j ď l.

Definition 4.2.3. The comb-trees χI and χ´1
I , are the w–trees for the trivial n–braid diagram 1n,

shown in Figure 4.10. We say that χI is positive and that χ´1
I is negative.

i2 il–1 il

i1 i0
i2 il–1 il

i1 i0
ÂI ÂI–1

Figure 4.10: The positive and negative comb-trees χI and χ´1
I .

In what follows, we blur the distinction between comb-trees and the result of their surgery up to
homotopy. From this point of view, a comb-tree is a pure homotopy welded braid and the product
χIχI 1 of two comb-trees is the product 1χI1χI1 .

Example 4.2.4. The two comb-trees χI and χ´1
I are, up to homotopy, inverse to each other. Indeed,

consider the product χIχ
´1
I and apply an arrow isotopy to make the two comb-trees parallel. Then

using the Inverse move from proposition 4.1.9 we delete the two w-trees. We illustrate this operation
with the comb-trees χ314 and χ´1

314 in Figure 4.11.21 43 21 43∼ ∼ 21 43
Figure 4.11: The product χ314χ

´1
314 is trivial.

Lemma 4.2.5. Let T be a w-tree of degree l for the trivial braid 1 with head on the i-th component,
then 1T is link-homotopic to a product of comb-trees of degree l with head on the i-th component.
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Proof. First, we may use a Head Reversal from Proposition 4.1.9 to ensure that the orientation of
the head and the strand that it intersects are arranged as in Figure 4.10. Then, we may apply the
IHX relation of Lemma 4.1.12, and we may arrange the cyclic order at each trivalent vertex with
Proposition 4.1.10 to get the shape depicted in Figure 4.10 for each individual comb-tree. Next, we
may exchange endpoints using Lemma 4.1.11 to obtain the product arrangement; this creates w-trees
with repeats which are trivial up to link-homotopy by Proposition 4.1.8. Finally, with Proposition
4.1.10, we move all twists to the edge incident to the head and cancel them pairwise.

Definition 4.2.6. We say that a pure homotopy welded braid β P hWPn given by a product of
comb-trees β “ χ˘1

I1
χ˘1
I2

¨ ¨ ¨χ˘1
Im

is :

• stacked if χIi “ χIj for some i ď j implies that χIi “ χIk for any i ď k ď j,

• reduced if it contains no redundant pair, i.e., two consecutive factors are not the inverse of each
other.

If β is reduced and stacked, then we can rewrite β as β “
ś

χνi
Ii
for some integers νi and with χIi ‰ χIj

for any i ‰ j. Moreover, given any total order ď on the set of positive comb-trees, we say that a
reduced and stacked writing is a normal form of β for this order if χIi ď χIj for all i ď j.

Theorem 4.2.7. Any pure homotopy welded braid β P hWPn can be expressed in a normal form, for
any order on the set of positive comb-trees.

Proof. Note that the comb-trees χij correspond to the usual pure welded braid group generators χij

shown in Figure 4.13 (see Remark 4.2.10). Thus it is clear that β is given by a product of degree one
comb-trees.

Now we rearrange these comb-trees according to the given order with Lemma 4.1.11. This may
introduce new w-trees of degree strictly higher than one, and by Lemma 4.2.5 we can freely assume that
these are all comb-trees. Next we consider degree two comb-trees and we rearrange them according
to the order. Again this introduces higher degree w-trees, which can all be assumed to be comb-
trees according to Lemma 4.2.5. By iterating this process degree by degree, we eventually obtain the
desired normal form. Indeed, the procedure terminates because w-trees of degree higher than n are
trivial in hWPn by Lemma 4.1.8.

Remark 4.2.8. This result is to be compared with Theorem 9.4 of [MY19], which uses a different
notion of comb-tree, ordered according to the degree. Their method is based on the correspondence
between comb-trees and Milnor numbers. In particular, their approach also proves the unicity of the
normal form and the that Milnor numbers are complete invariants of pure homotopy welded braids.
We will also prove the unicity of the normal form later in Corollary 4.2.35 using another method.

Remark 4.2.9. Note that this result could be adapted to the whole homotopy welded braid group.
This would require extending the notion of normal form to all homotopy welded braids. This could be
done by associating a homotopy welded braid with each permutation.

4.2.2 Welded braid group presentations

In this section we use the usual Artin braid generators σi for i P t1, . . . , n´ 1u and the usual virtual
braid generators ρi for i P t1, . . . , n´1u illustrated in Figure 4.12. We also use the usual pure welded
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braid generators

χij “

"

ρiρi`1 ¨ ¨ ¨ ρj´2σj´1ρj´1ρj´2 ¨ ¨ ¨ ρi`1ρi if 1 ď i ă j ď n,
ρi´1ρi´2 ¨ ¨ ¨ ρj`1ρjσjρj`1 ¨ ¨ ¨ ρi´2ρi´1 if 1 ď j ă i ď n,

illustrated in Figure 4.13.

ni1 i+1
ni1 i+1

Figure 4.12: The welded generator σi and ρi.

nji1
nij1

Figure 4.13: The pure welded generator χij .

Remark 4.2.10. Note that, the notation χij is already used for degree one comb-trees from Section
4.2.1: this is because the pure welded braid generator χij is the surgery result of the comb-tree χij on
the trivial braid.

The (pure) homotopy welded braid group appears as a quotient of the (pure) welded braid group
of which we recall a presentation from [Dam17] in Theorem 4.2.11. The end of the section consists
in using the arrow calculus to describe some relations of the homotopy quotient in order to obtain a
presentation for the (pure) homotopy welded braid group.

Theorem 4.2.11. [Dam17, Corollary 3.15; Corollary 3.19.] A presentation2 for the welded braid
group is given by:

WBn “ xσi,ρi
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rσi,σjs “ 1 if |i ´ j| ą 1
σiσi`1σi “ σi`1σiσi`1 for 1 ď i ă n ´ 1
rρi,ρjs “ 1 if |i ´ j| ą 1
ρiρi`1ρi “ ρi`1ρiρi`1 for 1 ď i ă n ´ 1
ρ2i “ 1 for 1 ď i ă n
rσi,ρjs “ 1 if |i ´ j| ą 1
σiρi`1ρi “ ρi`1ρiσi`1 for 1 ď i ă n ´ 1
ρiσi`1σi “ σi`1σiρi`1 for 1 ď i ă n ´ 1

y.
A presentation for the pure welded braid group is given by:

WPn “ xχij

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rχij ,χkls “ 1 if ti,ju X tk,lu “ H

rχik, χjks “ 1 for any i,j,k
rχikχjk,χijs “ 1 for any i,j,k

y.
2Here and in the following presentation, generators σi and ρi are indexed by integers i P t1, . . . , n´1u, and generators

χij are indexed by pairs of integers i ‰ j P t1, . . . , n ´ 1u.
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In order to get a presentation for the pure homotopy welded braid group, let us first state a
preparatory technical lemma.

Lemma 4.2.12. For any 1 ď i ‰ k ď n and any ω P hWPn, the conjugate ωχikω
´1 is obtained as

the surgery on a product of nonrepeated w-trees for the trivial braid, all containing i and k in their
support and having a tail on the k-th component.

Proof. Firstly, if T1 and T2 are two w-trees for the trivial braid 1 such that |supppT1q X supppT2q| ě 2
then their endpoints can be freely exchanged and T1 commutes with T2. Indeed, exchanging two tails
is always possible according to move (5) from Lemma 4.1.11, and if one of the two endpoints is a head
then by move (6) or (7) from Lemma 4.1.11 the exchange creates a new w-tree. However, thanks
to the condition on the supports, this w-tree has repeats and is therefore trivial up to homotopy as
shown by Lemma 4.1.8. Observe also that T1 and T2 commute if they have disjoint support, or if the
endpoints on supppT1q X supppT2q are all tails, by move (5) of Lemma 4.1.11.

The only remaining case is thus that of two w-trees T1 and T2 with supppT1q X supppT2q “ tiu for
some i, and such that the i-th component contains the head of T1 or T2. Then commuting T1 and T2 is
achieved by exchanging their endpoints lying on the i-th component. By doing so, as shown by move
(6) or (7) from Lemma 4.1.11, this creates a new w-tree T3 such that supppT3q “ supppT1qYsupppT2q

and rootspT3q “ rootspT1q Y rootspT2q. This w-tree has then at least two endpoints in common with
T1 and T2, thus it can be moved freely and we get T1T2 “ T3T2T1 “ T2T3T1 “ T2T1T3.

The observations above imply that, if F is a product of w-trees all containing i and k in their
support and having a tail on the k-th component, then for any w-tree W the conjugate WFW´1

is again a product of w-trees all containing i and k in their support and having a tail on the k-th
component.

Finally we express ω P hWPn as a product of w-trees ω “ Wm ¨ ¨ ¨W0. Then, since χik contains i
and k in its support and has a tail on the k-th component, the conjugate F1 :“ W0χikW

´1
0 is again a

product of w-trees all containing i and k in their support and having a tail on the k-th component.
Therefore, by taking successive conjugates Fk`1 :“ WkFkW

´1
k , we eventually conclude the proof.

The two following propositions give us relations in the pure homotopy welded braid group.

Proposition 4.2.13. For any pairwise distinct 1 ď i, j, k ď n, and any ω P hWPn, χjk commutes
with ωχikω

´1.

Proof. Let us denote by W a product of w-trees for the trivial braid 1 with surgery result ωχikω
´1. To

prove the proposition we consider the product χjkW , and perform endpoints exchanges to move χij

down across W . To do so, we first slide the tail of χjk along the k-th component. Thanks to Lemma
4.2.12, all the factors of W have only a tail on the k-th component, so using move (5) from Lemma
4.1.11 we can achieve this sliding freely. Next, we slide the head of χjk along the j-th component.
We use moves (6) and (7) from Lemma 4.1.11 to cross endpoints of w-trees in W that we encounter
along the sliding. This creates w-trees with repeats (they intersect the k-th component in two points),
which are trivial up to homotopy by Lemma 4.1.8.

Proposition 4.2.14. For any 1 ď i ‰ k ď n and any ω P hWPn, χki commutes with ωχikω
´1.

Proof. Let us denote by W a product of w-trees for the trivial braid 1 with surgery result ωχikω
´1.

According to Lemma 4.2.12 all factors of W contains i and k in their support. In particular, when

70



we use Lemma 4.1.11 to exchange endpoints of those factors with endpoints of χki, we create w-trees
with repeats, which are trivial up to homotopy by Lemma 4.1.8.

Theorem 4.2.15. We have the following presentation for the homotopy welded braid group.

hWPn “ xχij

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rχij ,χkls “ 1 if ti,ju X tk,lu “ H

rχij ,χjks “ rχik,χijs for any i, j, k
“

χjk,ωχikω
´1
‰

“
“

χki,ωχikω
´1
‰

“ 1 for any i, j, k and any word ω
y.

Proof. In [Dar23, Theorem 5.8.], a presentation for the pure homotopy welded braid group is given
from the group presentation of Theorem 4.2.11, by adding relations of the form

“

χjk,ωχikω
´1
‰

“
“

χki,ωχikω
´1
‰

“ 1,

for certain indices i, j, k, and for certain ω P hWPn. Our observation is that, such relations are
true for all indices i, j, k and all ω P hWPn, as stated in Proposition 4.2.13 and Proposition 4.2.14.
We conclude the proof, by showing that the relations rχikχjk,χijs “ 1 and rχij ,χjks “ rχik,χijs are
equivalent in hWPn:

rχikχjk,χijs “ 1,

ô χikχjkχijχ
´1
jk χ

´1
ik χ´1

ij “ 1,

ô χikχjkχijχ
´1
ik χ´1

jk χ
´1
ij “ 1, by commuting χ´1

jk with χ´1
ik

ô χikχjkχijχ
´1
ik χ´1

ij χijχ
´1
jk χ

´1
ij “ 1,

ô χikχijχ
´1
ik χ´1

ij χjkχijχ
´1
jk χ

´1
ij “ 1, by commuting χjk with χijχ

´1
ik χ´1

ij

ô rχik,χijsrχjk,χijs “ 1,

ô rχij ,χjks “ rχik,χijs.

Corollary 4.2.16. A presentation for the homotopy welded braid group hWBn is given by adding
the relations

“

χjk,ωχikω
´1
‰

“
“

χki,ωχikω
´1
‰

“ 1,

for any i, j, k, and any ω P hWPn, to the presentation of the welded braid group in Theorem 4.2.11.

Proof. The proof follows from Theorem 4.2.15, and the fact that, if a welded braid is trivial up to
homotopy then it belongs to the pure welded braid group hWPn.

Remark 4.2.17. We give here, in Theorem 4.2.15 and Corollary 4.2.16, infinite presentations. How-
ever, as in the classical framework (see Remarks 2.2.3 and 2.2.7), we can reduce them to finite pre-
sentations using Proposition 1.2.5 and Corollary 1.2.6.

4.2.3 A linear faithful representation of the homotopy welded braid group

In this section, we extend the construction of the representation γ of Section 2.3 to the framework of
the homotopy welded braid group. As a result, the construction of this section is very similar to that
of Section 2.3. To avoid being too redundant, we will go a little faster and omit some proofs when we
consider them too identical to those of Section 2.3.
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4.2.3.1 Algebraic definition

Let us first recall some algebraic ingredients from Section 1.2. First, we need the reduced free group
RFn from Definition 1.2.1. It is the quotient of the free group in which the generators xi commute
with their conjugates. We showed in Theorem 1.2.10 that any element ω P RFn has a unique normal
form, i.e., there exists a unique ordered set of integers te1, . . . , emu associated to the ordered family
of commutators F “ trα1s, rα2s, . . . , rαmsu such that we have a unique writing

ω “ rα1se1rα2se2 ¨ ¨ ¨ rαmsem .

Recall that the elements rαs P F are given for a sequence of indices α “ pi1,i2, ¨ ¨ ¨ ,ilq, by the following
expression:

rαs :“ rr¨ ¨ ¨ rrxi1 ,xi2s,xi3s, ¨ ¨ ¨ ,xil´1
s,xils P RFn.

Finally, in Definition 1.2.13, we defined the Z-module V generated by the formal commutators
tα1, α2, ¨ ¨ ¨ , αmu associated to the family F . We also defined the linearization map ϕ : RFn Ñ V
given on an ordered normal form by:

ϕprα1se1rα2se2 ¨ ¨ ¨ rαmsemq “ e1α1 ` e2α2 ` ¨ ¨ ¨ ` emαm.

In order to define a linear representation of the homotopy welded braid group, we need the
homotopy welded Artin representation.

Definition 4.2.18. We call welded Artin representation the homomorphism denoted by ζ :
WBn Ñ AutpFnq and defined as follows:

ζpσiq :

$

&

%

xi ÞÑ xi`1,

xi`1 ÞÑ x´1
i`1xixi`1,

xk ÞÑ xk if k R ti, i ` 1u,

and,

ζpρiq :

$

&

%

xi ÞÑ xi`1,
xi`1 ÞÑ xi,
xk ÞÑ xk if k R ti, i ` 1u.

Similarly, the homomorphism
ζh : hWBn Ñ AutpRFnq

defined by the same expressions is called the homotopy welded Artin representation.

The fact that the homotopy welded Artin representation is well-defined is discussed in [Dah62];
see also [Wat72, FRR97]. The fact that the homotopic version of this representation, it is shown in
[ABMW17a, Section 4.4.1] that it is well-defined.

Theorem 4.2.19. Let GLpVq be the general linear group of the Z-module V. The map

γW : hWBn Ñ GLpVq

defined for β P hWBn and rαs P F by γW pβqpαq “ ϕ ˝ ζhpβqprαsq is a well-defined homomorphism.
Moreover, γW does not depend on the chosen order on F .
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The proof of Theorem 4.2.19 is strictly similar to that of Proposition 2.3.2. It is based on Lemma
4.2.20, which is the welded analogue of Lemma 2.3.1, and which is proved in the same way.

Lemma 4.2.20. Let us denote by Nj the subgroup normally generated by xj in RFn for j P t1, . . . , nu.
Let β P hWBn be a homotopy welded braid with associated permutation πpβq, and let C P Nj be a
commutator. If the product rα1se1 ¨ ¨ ¨ rαmsem is the normal form of ζhpβqpCq then we have that ei “ 0
if rαis R Nπ´1pβqpjq.

Remark 4.2.21. We mention that, like the representation γ, the homomorphism γW is injective.
This can be shown using the injectivity of ϕ and ζh (see [ABMW17a, Proposition 2.33]). However, in
the next Section 4.2.3.4, we will give another proof of this result using arrow calculus. This is stated
in Theorem 4.2.34, which in turn reproves the injectivity of ζh. Furthermore, our approach by arrow
calculus will allow explicit computations of the representation in Section 4.2.3.3.

Remark 4.2.22. The representation theory of welded braid groups is a new and rich field of re-
search: so far, few other representations are known, and the focus is mainly on extending Burau’s
representation, see for instance [KMRW17, PS22, DMR23].

In the following proposition, we prove the well-know fact that the natural inclusion of hBn in
hWBn is injective.

Proposition 4.2.23. The homotopy braid group hBn injects into the homotopy welded braid group
hWBn as follows:

ι : hBn Ñ hWBn

σi ÞÑ σi

Proof. Let us take β P hBn in the kernel of ι, then γW ˝ ιpβq “ γW p1q. Moreover, we see from the
definition that the image γpσiq of σi P hBn by the representation γ defined in Section 2.3, coincides
with the image γW pσiq of σi P hWBn for any 1 ď i ď n. In particular we obtain the equality
γW ˝ ιpβq “ γpβq “ Id. Finally, using the injectivity of γ from Theorem 2.3.11, we get that β “ 1 and
the proof is complete.

Remark 4.2.24. From this proof, we can freely regard the representation γ of Section 2.3, as the
restriction of γW to hBn, seen as a subgroup of hWBn.

4.2.3.2 Arrow interpretation

We first give an interpretation of the welded Artin (resp. homotopy welded Artin) representation
in terms of arrow calculus. As in the classical case, we first add a new strand to the right of the
braid and we label it by ‘8’. Then we give in the following lemma a diagrammatic interpretation of
the free group Fn (resp. reduced free group RFn) on which WBn (resp. hWBn) acts. To do so we
introduce the pure generator χ8,i for 1 ď i ď n shown in Figure 4.14. This generator χ8,i can be
reinterpreted in terms of arrows as depicted in the same figure. There and in subsequent figures, we
simply represent a small part of the 8 component on which the arrow head is located.

Lemma 4.2.25. The family tχ8,i “ ρnρn´1 ¨ ¨ ¨ ρi`1ρiσiρi`1 ¨ ¨ ¨ ρn´1ρnu1ďiďn seen as pure welded
braids in WBn`1 (resp. homotopy welded braid in hWBn`1) generate a free group (resp. reduced free
group).
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ni1∞ni1 22 n–1 n–1 ∞
Figure 4.14: The pure generator χ8,i and its arrow interpretation.

Proof. We only provide the proof in the homotopy setting, since this is the version that we will use
afterwards. Note, however, that the proof is very similar in the non-homotopic case. We first use the
homotopy welded Artin representation to reinterpret the χ8,i as automorphisms of the reduced free
group generated by x1, . . . , xn, x8 as follows:

ζhpχ8,iq “

"

x8 ÞÑ x´1
i x8xi,

xk ÞÑ xk if k ď n.

In particular, for any element χ8,i1 ¨ ¨ ¨χ8,im P xχ8,iy1ďiďn we have:

ζpχ8,i1 ¨ ¨ ¨χ8,imqpx8q “ x´1
i1

¨ ¨ ¨x´1
im

x8xi1 ¨ ¨ ¨xim ,

with xik ‰ x8 P RFn`1 for any 1 ď k ď m. Therefore, if a relation χ8,i1 ¨ ¨ ¨χ8,im “ 1 holds in
xχ8,iy1ďiďn, then the relation xi1 ¨ ¨ ¨xim “ 1 must also hold in RFn`1. However, RFn`1 only admits
reduced-type relations (i.e., of the form rxi,λxiλ

´1s “ 1 for any i and any λ P RFn), thus the only
possible relations in xχ8,iy1ďiďn must be of reduced-type as well. But we have seen in Theorem
4.2.15 that the generators χ8,i indeed satisfy all reduced-type relations rχ8,i,ωχ8,iω

´1s “ 1 for any
1 ď i ď n and any ω P xχ8,iy1ďiďn.

In this context, the automorphism ζpβq (resp. ζhpβq) associated to an element β in WBn (resp.
hWBn) is given on a generator χ8,i in Fn (resp. in RFn) by considering the conjugation βχ8,iβ

´1

illustrated in Figure 4.15. Then we re-express this element as a product of w-trees with heads on the

¯

¯ –1 ∞∞
ni1 ni1

⟼³h(¯)
Figure 4.15: Arrow interpretation of the welded Artin representation.

8-strand, which we are able to reinterpret as elements of Fn or RFn. This fact is explicitly stated in
the following lemma in the homotopic framework.

Lemma 4.2.26. We have the following equalities in hWBn`1:

ρiχ8,kρi “

$

&

%

χ8,i`1 if k “ i,
χ8,i if k “ i ` 1,
χ8,k otherwise,
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and,

σiχ8,kσ
´1
i “

$

&

%

χ8,i`1 if k “ i,

χ´1
8,i`1χ8,iχ8,i`1 if k “ i ` 1,

χ8,k otherwise.

Proof. We compute ρiχ8,kρi using arrow calculus. If k R ti,i ` 1u, the equality is clear since χ8,k

commutes with ρi up to virtual isotopy. If k “ i (resp. k “ i ` 1) we slide the tail of χ8,i (resp.
χ8,i`1) through ρi, obtaining χ8,i`1 (resp. χ8,i), and then simplify the two virtual associated with
ρ2i .
Next, we turn our attention to the classical generators σi, and we compute σiχ8,kσ

´1
i . Again, when

k R ti,i ` 1u we have that χ8,k commutes with σi and the equality is clear. If k “ i, we rewrite the
conjugate as

σiχ8,iσ
´1
i “ σiρ

2
iχ8,iρ

2
iσ

´1
i “ χi,i`1χ8,i`1χ

´1
i,i`1,

where the second equality use the equality proved just above and the following σiρi “ χi,i`1. Thanks
to the tails exchange move from Lemma 4.1.11, χi,i`1 and χ8,i`1 commute and we have the desired
equality. For the last case, if k “ i ` 1, applying the same trick transforms the conjugate into:

σiχ8,i`1σ
´1
i “ χi,i`1χ8,iχ

´1
i,i`1.

This yields a new conjugate, illustrated on the left side of Figure 4.16. Finally, we conclude using a
slide move from [MY19, Section 4.3] to transform this conjugate into χ´1

8,i`1χ8,iχ8,i`1, as depicted
on the right-hand side of Figure 4.16.

n1 n1i i+1
∞ ⟶Slide move i i+1

∞∞∞
Figure 4.16: Slide move between χi,i`1χ8,iχ

´1
i,i`1 and χ´1

8,i`1χ8,iχ8,i`1.

Therefore, as in the classical case, we have an explicit 3-steps procedure to compute γW pβqpαq for
any β P hWBn and any α P V:

Step 1 Consider the conjugate of the w-tree χ8,α by the braid β (see Figure 4.15).

Step 2 Use arrow calculus to re-express this conjugate as an ordered union of comb-trees of the form
χ8,α1 (the order comes from the order on F).

Step 3 The number of parallel copies of a given comb-tree in this product is the coefficient of the
associated commutator in γW pβqpαq.

In the proof of Theorem 4.2.28 below, we will use explicitly this procedure to compute the represen-
tation.

Let us give first, in the following proposition, a correspondence between the family of commutators
F and comb-trees of the form χ8,I .
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Proposition 4.2.27. Let i1, i2, . . . , il be a sequence of nonrepeated indices such that i1 ă ij for any
j ď l. We have the following relation up to homotopy:

χ8,i1,...,il „ rχ8,i1,...,il´1
,χ8,ils “ χ8,i1,...,il´1

¨ χ8,il ¨ pχ8,i1,...,il´1
q´1 ¨ pχ8,ilq

´1.

For example in Figure 4.17 we illustrate the equivalence χ81324 „ rχ8132,χ84s.2 51 43 2 51 43
∞ ∞∞∞

∞∼
Figure 4.17: The w-tree χ81324 is link-homotopic to the commutator rχ8132,χ84s.

Proof. Consider the product of w-trees χ8,i1,...,il´1
¨ χ8,il ¨ pχ8,i1,...,il´1

q´1 ¨ pχ8,ilq
´1 (as for example

on the right-hand side of Figure 4.17). First, we use move (6) from Lemma 4.1.11 to exchange the
heads of χ8,i1,...,il´1

and χ8,il ; this move creates an extra w-tree, which is exactly χ8,i1,...,il . Now
using arrow isotopies and the inverse move from Proposition 4.1.9 we get:

χ8,i1,...,il ¨ χ8,il ¨ χ8,i1,...,il´1
¨ pχ8,i1,...,il´1

q´1 ¨ pχ8,ilq
´1 „ χ8,i1,...,il .

By using this proposition iteratively, we obtain a correspondence between the commutators rαs P F
(or α P V) and the w-trees χ8,α. For example the homotopy equivalence

χ81324 „ rrrχ81,χ83s,χ82s,χ84s

corresponds to r1324s “ rrrx1,x3s,x2s,x4s in RFn.

4.2.3.3 Explicit Computations

In Theorem 2.3.5, we computed the representation γ on the Artin generators σi; This readily provides
the computation of γW pσiq by Remark 4.2.24. In order to describe the representation γW , it thus
remains to compute its image on the virtual generators ρi. This is done in the next theorem using the
above procedure. As in Theorem 2.3.5, the images of a commutator pi1,i2, ¨ ¨ ¨ ,ilq :“ ϕpri1,i2, ¨ ¨ ¨ ,ilsq P

V by the maps γW pσiq and γW pρiq, depend on the position of the indices i and i ` 1 in the sequence
i1, i2, . . . , il.

Theorem 4.2.28. For suitable sequences I, J, K in t1, . . . , nuzti, i ` 1u, I ‰ H, we have:

γW pσiq :

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

pIq ÞÑ pIq paq

pJ,i,Kq ÞÑ pJ,i ` 1,Kq pbq
pi ` 1,Kq ÞÑ pi,Kq ` pi,i ` 1,Kq pcq
pI,i ` 1,Kq ÞÑ pI,i,Kq ` pI,i,i ` 1,Kq ´ pI,i ` 1,i,Kq pdq

pI,i,J,i ` 1,Kq ÞÑ pI,i ` 1,J,i,Kq peq

pI,i ` 1,J,i,Kq ÞÑ pI,i,J,i ` 1,Kq pfq

pi,J,i ` 1,Kq ÞÑ
ř

J 1ĎJp´1q|J 1|`1pi,J 1,i ` 1,JzJ 1,Kq pgq
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and

γW pρiq :

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

pIq ÞÑ pIq phq

pJ,i,Kq ÞÑ pJ,i ` 1,Kq piq
pJ,i ` 1,Kq ÞÑ pJ,i,Kq pjq

pI,i,J,i ` 1,Kq ÞÑ pI,i ` 1,J,i,Kq pkq

pI,i ` 1,J,i,Kq ÞÑ pI,i,J,i ` 1,Kq plq

pi,J,i ` 1,Kq ÞÑ
ř

J 1ĎJp´1q|J 1|`1pi,J 1,i ` 1,JzJ 1,Kq pmq

where in pgq and pmq, the sum is over all (possibly empty) subsequences J 1 of J , and J 1 denotes the
sequence obtained from J 1 by reversing the order of its elements, see Example 4.2.29.

Example 4.2.29. If J “ pj1, j2, j3q and K “ H in pgq or pmq, then γW pσiq and γW pρiq both map
pi,J,i ` 1q to :

´pi,i ` 1,j1,j2,j3q ` pi,j1,i ` 1,j2,j3q ` pi,j2,i ` 1,j1,j3q ` pi,j3,i ` 1,j1,j2q

´pi,j2,j1,i ` 1,j3q ´ pi,j3,j1,i ` 1,j2q ´ pi,j3,j2,i ` 1,j1q ` pi,j3,j2,j1,i ` 1q.

The proof below explains how this follows from the IHX relations of Figure 4.20.

Proof of Theorem 4.2.28. As already observed, the former half of the statement, expressing γW pσiq,
readily follows from Theorem 2.3.5. Hence we focus here on computing γW pρiq. Following the pro-
cedure given above, we consider the conjugate ρiχ8,αρ

´1
i and apply arrow calculus to turn it into a

union of w-trees with heads on the 8-th component.

For phq it is clear that χ8,I commutes with ρi by arrow isotopy, since i, i ` 1 R supppχ8,Iq.
The computations of piq, pjq, pkq and plq are given by an isotopy interchanging the i-th and i ` 1-th
component, as shown for example in Figure 4.18 in the case piq.∼i+1i i+1i

Â∞,J,i,K∞ Â∞,J,i+1,K∞
Figure 4.18: Computation of piq.

For pmq, the first step is illustrated in Figure 4.19: we apply the previous isotopy followed by move
(4) from Proposition 4.1.10, turning ρiχ8,i,J,i`1,Kρ´1

i into a new w-tree, which is not a comb-tree.
In a second step, we use the IHX relation from Proposition 4.1.12 repeatedly to turn this new w-tree
into a product of comb-trees. This is illustrated in Figure 4.20 where J “ pj1,j2,j3q, as in example
4.2.29; we conclude by simplifying the twists with Proposition 4.1.10

Example 4.2.30. We illustrate Theorem 4.2.28 on the 3-component homotopy welded braid group
hWB3. To do so, we set p1q, p2q, p3q, p12q, p13q, p23q, p123q, p132q to be the generators of V, with
the order of Definition 1.2.8. We already computed in Example 2.3.7 the automorphisms γpσ1q and
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∼Â∞,i,J,i+1,K
i+1 i+1i

∞
i

∞J

J

i+1i

∞J∼
Figure 4.19: Turning ρiχ8,i,J,i`1,Kρ´1

i into a new w-tree.

i+1 j1
j2
j3

i+1 j1
j2
j3 i+1 j1

j2
j3

i+1 j1
j3j2 i+1 j1

j2 j3 i+1 j1
j3 j2 i+1 j1

j3 j2

j1i+1 j3 j2j2i+1j3 j1 j2i+1j3 j1 j1i+1j3 j2j3i+1j1 j2j3i+1 j1 j2 j3i+1j2 j1 j3i+1j2 j1

Figure 4.20: Iterated IHX relations.
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γpσ2q, which coincide with γW pσ1q and γW pσ2q as mentioned by Remark 4.2.24. We compute here γW

on the virtual generators ρ1, ρ2:

γW pρ1qp1q “ p2q, γW pρ2qp1q “ p1q,
γW pρ1qp2q “ p1q, γW pρ2qp2q “ p3q,
γW pρ1qp3q “ p3q, γW pρ2qp3q “ p2q,
γW pρ1qp12q “ ´p12q, γW pρ2qp12q “ p13q,
γW pρ1qp13q “ p23q, γW pρ2qp13q “ p12q,
γW pρ1qp23q “ p13q, γW pρ2qp23q “ ´p23q,
γW pρ1qp123q “ ´p123q, γW pρ2qp123q “ p132q,
γW pρ1qp132q “ ´p123q ` p132q, γW pρ2qp132q “ p123q.

This gives us the following matrices:

γW pρ1q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0
1 0 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0
0 0
0 0

0 0 0
0 0 0
0 0 0

´1 0 0
0 0 1
0 1 0

0 0
0 0
0 0

0 0 0
0 0 0

0 0 0
0 0 0

´1 ´1
0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, γW pρ2q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0
0 0 1
0 1 0

0 0 0
0 0 0
0 0 0

0 0
0 0
0 0

0 0 0
0 0 0
0 0 0

0 1 0
1 0 0
0 0 ´1

0 0
0 0
0 0

0 0 0
0 0 0

0 0 0
0 0 0

0 1
1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Given the similarities between these matrices and those for γpσiq “ γW pσiq given in example
4.2.30, it is not surprising to have the following analogue of Proposition 2.3.8 and Remark 2.3.9 in
the welded case. The proof are omited since they are strictly similar to those given in Section 2.3.

Proposition 4.2.31. For β P hWBn a homotopy welded braid, the matrix associated to γW pβq in
the basis of V, endowed with the order resulting from Definition 1.2.8, is given by a lower triangular
block matrix of the following form:

¨

˚

˚

˚

˝

B1,1 0 ¨ ¨ ¨ 0
B2,1 B2,2 ¨ ¨ ¨ 0
...

...
. . .

...
Bn,1 Bn,2 ¨ ¨ ¨ Bn,n

˛

‹

‹

‹

‚

where Bi,i is a finite order matrix of size rkpViq “
řn´1

i´1
k!

pk´i`1q! which is the identity when β is pure.

Moreover, B1,1 is the matrix of the left action by permutation k ÞÑ π´1pβqpkq, and B2,2 is the matrix
of the left action on the set tpk, jqukăj given by:

pk, jq ÞÑ

" `

π´1pβqpkq, π´1pβqpjq
˘

if π´1pβqpkq ă π´1pβqpjq,
´
`

π´1pβqpjq, π´1pβqpkq
˘

if π´1pβqpjq ă π´1pβqpkq.

Remark 4.2.32. By the same argument as in Remark 2.3.9, the image γW pβqpkq on all weight 1
commutators pkq, is encoded in the blocks Bi,1 given in the first n columns, and these blocks thus
completely determine γW pβq. Additionally, the blocks Bi,i are entirely determined by the permutation
πpβq associated with the braid β P hWBn.
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4.2.3.4 Injectivity

We conclude by showing the injectivity of the representation γW and the unicity of the normal form.
As a preparatory step, let us first compute the image by γW of a braid given by the surgery result of
a comb-tree.

Lemma 4.2.33. Let i0 P t1, . . . , nu and let J “ pi1, i2, . . . , ikq be a sequence of non-repeated indices
in t1, ¨ ¨ ¨ ,nuzti0u, such that i1 ă il for all l ď k. Let also i be any index in t1, . . . , nu. The image
of the comb-tree χi0J by the representation γW , applied to the commutator piq P V, is given by the
following:

γW pχi0Jqpiq “

$

&

%

piq if i0 ‰ i,
pi0q ´ pJ,i0q if i0 “ i and i1 ă i0,
pi0q ` pi0,Jq ` S if i0 “ i and i0 ă i1,

with S a linear combination of commutators in V of the form
`

i0,iτp1q, ¨ ¨ ¨ ,iτpkq

˘

, for some permuta-
tions τ such that iτp1q ‰ i1 “ minpJq.

In Figure 4.21 we illustrate the relation γpχ4135qp4q “ p4q ´ p1354q.2 51 43 2 51 43∞ ∞∼ ∞
Figure 4.21: The relation γpχ4135qp4q “ p4q ´ p1354q.

In Figure 4.22 we illustrate the relation γpχ245qp2q “ p2q ` p245q ´ p254q.∼ ∼2 51 43 ∞ 2 51 43 ∞∞∞
2 51 43 ∞∞

Figure 4.22: The relation γpχ245qp2q “ p2q ` p245q ´ p254q.

Proof. Following the 3-steps procedure of section 4.2.3.2, we consider the product χi0Jχ8ijχ
´1
i0J

and
re-express it with only comb-trees whose head is on the 8-th component. To do this, we want to
commute χi0J and χ8ij , then simplify χi0J and χ´1

i0J
using the inverse move from Proposition 4.1.9.

To commute χi0J and χ8ij , we may need Lemma 4.1.11 to exchange the tail of χi0J with an endpoint
of χi0J . This can be achieved for free if the head of χi0J is not on the ik-th component, i.e., if i0 ‰ ik.
Otherwise, we apply a Head/Tail exchange (move (7)), which creates an extra w-tree (see Figures
4.21 and 4.22 for examples). If i1 ă i0, this new w-tree is exactly the comb-tree χ´1

8Ji0
. If i0 ă i1,

we have to apply the IHX relation from Proposition 4.1.12 repeatedly to turn it into a product of

80



comb-trees of the form χ8i0iτp1q¨¨¨iτpkq
, for some permutation τ . Note that, in the process, the only

factor χ8i0iτp1q¨¨¨iτpkq
satisfying τp1q “ 1 is the comb-tree χ8i0J .

3

Theorem 4.2.34. The representation γW : hWBn Ñ GLpVq is injective.

Proof. We take β P kerpγW q, which is pure according to Proposition 4.2.31; otherwise the block B1,1

is not the identity. Then, we consider a normal form for β using Theorem 4.2.7:

β “
ź

χνiJ
iJ .

The rest of the proof follows the same strategy as in Theorem 2.3.11. However, this time we use
another sub-representation adapted to the welded case. Consider

À

iďk

Vi, the subspace of V spanned by

commutators of weight less than or equal to k. We can define the associated projection pk : V Ñ
À

iďk

Vi,

and its composition with the restriction of γW to
À

iďk

Vi, denoted by γk :“ pk ˝ γ
W | À

iďk
Vi
. Thanks to

Proposition 4.2.31, γk is a representation with matrices given by the rows and columns corresponding
to the blocks Bs,s for s ď k. Moreover γkpχiIq “ Id for any comb-tree χiI with degpχiIq ą k. Hence
we have γkpβq “ γkpβ1q for β1 defined by:

β1 “
ź

degpχiJ qďk

χνiJ
iJ .

Now we show by strong induction on the degree k of χiJ that νiJ “ 0. For the base case k “ 1,
we take i0 P t1, . . . , nu. Then using Lemma 4.2.33 iteratively and the fact that γ1pχiIq “ Id if
degpχiIq ą 1, we obtain:

γ1pβ1qpi0q “ γ1

˜

ź

1ďi‰jďn

χ
νij
ij

¸

pi0q “ pi0q ´
ÿ

i1ăi0

νi0i1 ¨ pi1i0q `
ÿ

i0ăi1

νi0i1 ¨ pi0i1q.

Since β P kerpγq, we have that γ1pβqpi0q “ pi0q, and this implies that νi0i1 “ 0 for any i1 P t1, . . . , nu.
To prove that νiJ “ 0 for any χiJ of degree k we use the strong induction hypothesis, we get then:

β1 “
ź

degpχiJ qďk

χνiJ
iJ “

ź

degpχiJ q“k

χνiJ
iJ .

Thus thanks to Lemma 4.2.33 again and the fact that γkpχiIq “ Id if degpχiIq ą k, we finally obtain
for all i0 P t1, . . . , nu that:

γkpβ1qpi0q “ γk

¨

˝

ź

degpχiJ q“k

χνiJ
iJ

˛

‚pi0q “ pi0q ´
ÿ

J“pi1,...,ikq

i1ăi0

νi0J ¨ pJi0q `
ÿ

J“pi1,...,ikq

i0ăi1
i1“minpJq

νi0Jpi0Jq ` S,

where S is a sum of commutators of the form pi0,i1, ¨ ¨ ¨ ,ikq with i1 ‰ minti1, . . . ,iku. So in particular
no commutator in S occurs in the two above sums. Now, since β P kerpγq we have that γkpβqpi0q “ pi0q.

3Roughly speaking, this term arises by ‘tacking the term TH ’ in each occurrence of the IHX relation, see Figure 4.9.
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Thus considering the terms of the first sum we have that νi0J “ 0 for any J “ pi1, . . . , ikq such that
i1 ă i0. Moreover, considering the second sum, we have that νi0J “ 0 for any J “ pi1, . . . , ikq such
that i0 ă i1. Finally νiJ “ 0 for any χiJ of degree k which concludes the induction and completes the
proof.

Corollary 4.2.35. The normal form is unique in hWBn, i.e., if β “
ś

χνiJ
iJ “

ś

χ
ν1
iJ

iJ are two
normal forms of β for a given order on the set of positive comb-trees, then νiJ “ ν 1

iJ for any integer
i and any sequence J .

Proof. Recall that for a given integer k, the sub-representation γk from the previous proof satisfies
γkpβq “ γkpβ1q for β1 defined by:

β1 “
ź

degpχiJ qďk

χνiJ
iJ “

ź

degpχiJ qďk

χ
ν1
iJ

iJ .

As in the proof of Theorem 4.2.34, we proceed by strong induction on the degree that νiJ “ ν 1
iJ , the

base case being strictly similar. For the inductive step, note that by Proposition 4.1.11, a comb-tree
of degree k commutes with any comb-tree up to higher degree w-trees. Hence if χiJ is a comb-tree of
degree k then γkpχiJq commutes with γkpχIq for any comb-trees χI . In particular we get:

γkpβ1qpi0q “γk

¨

˝

ź

degpχiJ qăk

χνiJ
iJ

˛

‚˝ γk

¨

˝

ź

degpχiJ q“k

χνiJ
iJ

˛

‚pi0q,

“γk

¨

˝

ź

degpχiJ qăk

χ
ν1
iJ

iJ

˛

‚˝ γk

¨

˝

ź

degpχiJ q“k

χ
ν1
iJ

iJ

˛

‚pi0q.

By induction hypothesis νiJ “ ν 1
iJ for all χiJ such that degpχiJq ă k. Hence, multiplying by the

inverse of γk

˜

ś

degpχiJ qăk

χνiJ
iJ

¸

we obtain the equality:

γk

¨

˝

ź

degpχiJ q“k

χνiJ
iJ

˛

‚pi0q “ γk

¨

˝

ź

degpχiJ q“k

χ
ν1
iJ

iJ

˛

‚pi0q.

Finally, with Lemma 4.2.33 we obtain:

pi0q ´
ÿ

J“i1,...,ik
i1ăi0

νi0J ¨ pJi0q `
ÿ

J“i1,...,ik
i0ăi1

i1“minpJq

νi0Jpi0Jq `S “ pi0q ´
ÿ

J“i1,...,ik
i1ăi0

ν 1
i0J ¨ pJi0q `

ÿ

J“i1,...,ik
i0ăi1

i1“minpJq

ν 1
i0Jpi0Jq `S1,

where S and S1 are sums of commutators of the form pi0,i1, ¨ ¨ ¨ ,ikq with i1 ‰ minti1, . . . ,iku. In
particular, they are distinct from the commutators in the other sums. Therefore, we deduce from the
above equality that νiJ “ ν 1

iJ for all χiJ such that degpχiJq “ k, which concludes the induction as
well as the proof.
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4.3 The torsion problem revisited

In this section, the torsion problem in the homotopy braid group hBn is addressed again. But the
welded context (in which the classical braids are embedded) provides a better understanding of the
torsion. Following the reasoning in Section 2.4, along with welded techniques, we will eventually show
the absence of torsion in hBn for all n (Theorem 4.3.8).

As a first result we can already state the welded analogue of Theorem 2.4.16.

Theorem 4.3.1. The pure homotopy welded braid group hWPn is torsion-free for any n P N.

Proof. The proof follows from the global shape predicted by Proposition 4.2.31 of the matrix corre-
sponding to the image γW pθq of any θ P hWPn by the representation γW . It is a lower triangular
matrix which contains a diagonal of 1’s, and therefore satisfies γW pθqm “ Id for some integer m if and
only if γW pθq “ Id. Finally, by Theorem 4.2.34, the injectivity of γW implies that if θm “ 1 for some
pure homotopy welded braid θ and some integer m then θ “ 1.

Remark 4.3.2. It is well known to the experts that hWPn is torsion-free. This can indeed also be
shown using the additivity of Milnor numbers.

Let us set λn P hWBn the homotopy welded braid, illustrated in Figure 4.23, given by

λn “ ρ1ρ2 ¨ ¨ ¨ ρn´1.

We denote by τn the cycle pn n ´ 1 ¨ ¨ ¨ 2 1q “ πpλnq associated to λn. When the value of n is clear
from the context, it will be omitted in the notation.

1 2 n−2 n−1 n3

Figure 4.23: The homotopy welded braid λn.

Lemma 4.3.3. Let i P t1, . . . , nu and let I be a sequence of non-repeated indices in t1, . . . , nuztiu.
Suppose further that χiI is a comb-tree of degree d. Then, the conjugate λχiIλ

´1 is link-homotopic to
a product of degree d comb-trees, all having their head on the component τ´1piq.

Proof. We first use an arrow isotopy to slide χiI through λ and then simplify λ with λ´1 with a
welded isotopy. This turns χiI into a new w-tree of degree d with head on component τ´1piq. Then
using Lemma 4.2.5 we turn it, up to homotopy, into a product of degree k comb-trees all having their
head on the component τ´1piq.

Lemma 4.3.4. Let β P hWBn be a homotopy welded braid, whose associated permutation is an n-
cycle. Then β is conjugate to the product θλ with a pure homotopy welded braid θ P hWPn whose
normal form

θ “
ź

χνI
I

contains only comb-trees with head on the n-th component.
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Proof. Up to conjugation, we can suppose that πpβq “ τ . Then β “ θλ with θ “ βλ´1 a pure
homotopy welded braid with normal form given by:

θ “ χν1
I1
χν2
I2

¨ ¨ ¨χνm
Im

. (4.1)

Let us assume that νi ‰ 0 for some χIi whose head is not on the n-th component. Let us further
suppose that χIi is of minimal degree, i.e., the head of all comb-trees of degree smaller than degpχIiq

are on the n-th component. By Lemma 4.3.3 there exists some integer l ą 0, such that the conjugate
λlpχIiqλ

´l is link-homotopic to a product of comb-trees with head on the n-th component and with
same degree as χIi . We consider β1, the conjugate of β given by:

β1 “

˜

ź

0ďkăl

λkχνi
Ii
λ´k

¸´1

β

˜

ź

0ďkăl

λkχνi
Ii
λ´k

¸

,

“

˜

ź

0ďkăl

λkχνi
Ii
λ´k

¸´1

θ

˜

ź

0ăkďl

λkχνi
Ii
λ´k

¸

λ,

“

˜

ź

0ăkăl

λkχνi
Ii
λ´k

¸´1

χ´νi
Ii

θ

˜

ź

0ăkăl

λkχνi
Ii
λ´k

¸

´

λlχνi
Ii
λ´l

¯

λ.

Now note that, according to Lemma 4.3.3, the conjugates λkpχIiqλ
´k for 0 ă k ă l can be seen as

products of comb-trees with same degree as χIi . Moreover, thanks to Lemma 4.1.11 two comb-trees
commute up to higher degree w-trees, and by Lemma 4.2.5 we can assume that these higher degree
w-trees are also comb-trees. Then in the previous expression, up to comb-trees of degree greater than
that of χIi , we can simplify the terms λkpχIiqλ

´k for 0 ă k ă l with their inverse to obtain:

β1 “ χ´νi
Ii

θ
´

λlχνi
Ii
λ´l

¯

¨

˝

ź

degpχIi
qădegpχIq

χI

˛

‚λ.

Since the factor χνi
Ii

appears in the normal form θ “ χν1
I1
χν2
I2

¨ ¨ ¨χνm
Im

, we can, using the same argument,
express β1 as follows:

β1 “

´

χν1
I1

¨ ¨ ¨χ
νi´1

Ii´1
χ
νi`1

Ii`1
¨ ¨ ¨χνm

Im

¯´

λlχνi
Ii
λ´l

¯

¨

˝

ź

degpχIi
qădegpχIq

χI

˛

‚λ.

Finally we denote by θ1 the pure part of the product β1 “ θ1λ, the last step consists in computing the
normal form,

θ1 “ χ
ν1
1

I1
χ
ν1
2

I2
¨ ¨ ¨χ

ν1
m

Im
. (4.2)

Starting with

θ “

´

χν1
I1

¨ ¨ ¨χ
νi´1

Ii´1
χ
νi`1

Ii`1
¨ ¨ ¨χνm

Im

¯´

λlχνi
Ii
λ´l

¯

¨

˝

ź

degpχIi
qădegpχIq

χI

˛

‚,
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this is achieved by rearranging comb-trees degree by degree as it is done in the proof of Theorem
4.2.7. Let us compare the exponents ν 1

j and νj associated to the two normal forms (4.1) and (4.2).
First, if degpχIj q ă degpχIiq then ν 1

j “ νj since no new comb-tree of degree lower than χIi appeared
in the procedure. Second, it is clear that the exponent ν 1

i associated to χIi in (4.2) is now trivial,
i.e., ν 1

i “ 0. Finally, ν 1
j “ νj for almost all other comb-trees χIj of degree equal to degpχIiq. The

only exceptions come from the conjugate λlχνi
Ii
λ´l and concern comb-trees whose head is on the n-th

component.
In summary, the exponents of χIj of degree degpχIj q ď degpχIiq whose head is not in the n´th

component remain the same, except for the exponent of χIi which has become zero. Hence, by
repeating the above argument, we eventually obtain another conjugate of β of the form θ̃λ such that,
any comb-tree of degree lower than or equal to degpχIiq in the normal form of θ̃ has its head on the
n-th component. Moreover, since all w-trees of degree greater than n are trivial up to homotopy,
by proceeding by increasing degree, we can get rid of all comb-trees whose head is not on the n-th
component and finally obtain the desired conjugate.

As mentioned in Proposition 4.2.23 the group hBn appears as the subgroup of hWBn generated
by the Artin generators σi for 1 ď i ă n. We say that a homotopy welded braid is a classical braid
if it belongs to this subgroup. In the following lemma we give a new characterization of the torsion
in hBn using this notion of classical braid.

Lemma 4.3.5. There is torsion in hBn if and only if for some prime number p ď n the braid
λp P hWBp given by λp “ ρ1ρ2 ¨ ¨ ¨ ρp´1 is conjugate to a classical braid.

Proof. According to Lemma 2.4.17 if there is torsion in hBn, we can find a torsion element β of order
p in hBp, for some prime number p, which we regard as a classical braid β in hWBp. Moreover
Theorem 4.3.1 implies that πpβq ‰ Id but we know that πpβqp “ Id. In other words, πpβq is a torsion
element of order p in the p-th symmetric group meaning that it is a p-cycle. Then by Lemma 4.3.4,
β is conjugate to the product θλ where the normal form

θ “
ź

χ
νpI
pI ,

only contains comb-trees with head on the p-th component (for clarity, here and throughout the
remainder of the proof, we denote λp simply by λ). Moreover by Lemma 4.3.3, for any integer
k P t1, . . . p ´ 1u, the conjugates λkθλ´k are products of comb-trees, none of which have their head
on the p-th component. Hence by Lemma 4.2.33, we have that γW

`

λkθλ´k
˘

ppq “ ppq if 0 ă k ă p.
In particular:

γW

`

pθλqp
˘

ppq “ γW

´

θ
`

λθλ´1
˘`

λ2θλ´2
˘

¨ ¨ ¨
`

λp´1θλ1´p
˘

λp
¯

ppq,

“ γW pθqppq.

On the other hand, since β is a torsion element, βp “ pθλqp “ 1, which implies that

γW

`

pθλqp
˘

ppq “ γW p1qppq “ ppq.

By combining the two previous equality we deduce that γW pθqppq “ ppq. Moreover by Lemma 4.2.33
again, we also have that γW pθqpkq “ pkq for any k ă p. In particular, using Remark 4.2.32, we see
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that γW pθq is the identity, and by injectivity of γW , the braid θ is as well. Consequently, the classical
braid β is conjugate to λ, and thus, the first half of the proof is complete.

To show the converse, we use the fact that any conjugate of λ is a torsion element of order p
in hWBp and that, consequently, the braid given by the same expression in hBn is also a torsion
element.

The end of this section consists in showing that for any integer n, the braid λ has no classical
braid as conjugate. To do so, we will first recall the usual characterization from [HL90] of classical
braids in terms of automorphisms of the reduced free group. In fact, we will take a slightly different
view by using the reduced Magnus expansion of the proof of Theorem 2.3.12. Recall that this is
the homomorphism M̃ from the reduced free group into the polynomial algebra in non-commuting
variables X1, . . . , Xn in which monomials Xα1Xα2 ¨ ¨ ¨Xαk

vanish if αi “ αj for some i ‰ j. The
image of a generator xi is given by the polynomial M̃pxiq “ 1 ` Xi. In [Yur08, Theorem 7.11] and
[Dar23, Corollary 1.13], it is proved that M̃ is injective, so it is an isomorphism onto its image, which
we denote by In. Note that In is the group generated by 1 ` Xi for i P t1, . . . , nu. We can then
define a representation of the homotopy welded braid group Z : hWBn Ñ AutpInq given by:

Z : β ÞÑ M̃ ˝ ζhpβq ˝ M̃´1,

where ζh is the homotopy welded Artin representation defined in Definition 4.2.18. For later use, let
us compute the image of the Artin generators σi by the representation Z,

Zpσiq :

$

&

%

1 ` Xi ÞÑ 1 ` Xi`1,
1 ` Xi`1 ÞÑ 1 ` Xi ` XiXi`1 ´ Xi`1Xi,
1 ` Xk ÞÑ 1 ` Xk, if k R ti, i ` 1u,

and the image of the virtual generator ρi,

Zpρiq :

$

&

%

1 ` Xi ÞÑ 1 ` Xi`1,
1 ` Xi`1 ÞÑ 1 ` Xi,
1 ` Xk ÞÑ 1 ` Xk, if k R ti, i ` 1u.

We also compute the image of the braid λ “ ρ1 ¨ ¨ ¨ ρn´1 by the representation Z:

Zpλq :

"

1 ` Xi ÞÑ 1 ` Xi`1, if i ă n,
1 ` Xn ÞÑ 1 ` X1,

More simply, we can think of Zpλq as the automorphism permuting the variables Xi in the full ring.
Let us now state a property, inspired from [HL90, Theorem 1.7], on classical braids in terms of
automorphisms of In.

Lemma 4.3.6. Let β P hWBn be a homotopy welded braid. If β is a classical braid then

Zpβq
`

M̃px1x2 ¨ ¨ ¨xnq
˘

“ M̃px1x2 ¨ ¨ ¨xnq.

Proof. Let us first recall the expression of the homotopy welded Artin representation on the classical
Artin generators σi:

ζhpσiq :

$

&

%

xi ÞÑ xi`1,

xi`1 ÞÑ x´1
i`1xixi`1,

xk ÞÑ xk if k R ti, i ` 1u,
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It is clear by computation that

ζhpσiqpx1x2 ¨ ¨ ¨xnq “ x1x2 ¨ ¨ ¨xn

for any classical Artin generator σi. In particular, this implies the well-known fact that if β P hWBn

is a classical braid, then
ζhpβqpx1x2 ¨ ¨ ¨xnq “ x1x2 ¨ ¨ ¨xn,

or equivalently,
Zpβq

`

M̃px1x2 ¨ ¨ ¨xnq
˘

“ M̃px1x2 ¨ ¨ ¨xnq.

Let us make the observation that M̃px1x2 ¨ ¨ ¨xnq contains exactly one monomial of degree n,
given by X1X2 ¨ ¨ ¨Xn. Furthermore ZpλqpX1X2 ¨ ¨ ¨Xnq ‰ X1X2 ¨ ¨ ¨Xn, so Zpλq

`

M̃px1x2 ¨ ¨ ¨xnq
˘

‰

M̃px1x2 ¨ ¨ ¨xnq. In the following lemma, we go a little further in describing elements that are not
fixed points of Zpλq.

Lemma 4.3.7. The automorphism Zpλq has no fixed point of the form Zpβq
`

M̃px1x2 ¨ ¨ ¨xnq
˘

for any
β P hWBn.

Proof. Let us denote by A the polynomial algebra in non-commuting variables X1, . . . , Xn in which
monomials Xα1Xα2 ¨ ¨ ¨Xαk

vanish if αi “ αj for some i ‰ j. Now, consider the additive homomor-
phism F : A Ñ Z defined on the monomials. by:

F pXα1Xα2 ¨ ¨ ¨Xαk
q “

"

0 if k ă n,
1 if k “ n.

In other words, the homomorphism F sends a polynomial to the sum of the coefficients of its monomials
of degree n. Let us note on the one hand that F

`

ZpρiqpW q
˘

“ F pW q and F
`

ZpσiqpW q
˘

“ F pW q for
any W P In and any i. This is clear for ρi, which simply permutes the variables Xi and Xi`1. It is
less clear for σi, which, after the permutation, substitutes Xi with Xi `XiXi`1 `Xi`1Xi, potentially
introducing new monomials of degree n. However, these monomials appear in pairs and with opposite
signs and thus do not change the value of F . So it is clear that

F
`

ZpβqpW q
˘

“ F pW q,

for any β P hWBn and any W P In. Moreover note that,

F
`

M̃px1x2 ¨ ¨ ¨xnq
˘

“ F
`

p1 ` X1qp1 ` X2q ¨ ¨ ¨ p1 ` Xnq
˘

,

“ 1,

hence F
´

Zpβq
`

M̃px1x2 ¨ ¨ ¨xnq
˘

¯

“ 1 for any β P hWBn. But on the other hand, Zpλq acts on the

nontrivial monomials by permuting the variables Xi cyclically, and the orbits of the action are of
cardinality n. Therefore, if an element W P Inzt1u satisfies that ZpλqpW q “ W then it has to verify

F pW q ” 0 mod rns.

Hence such a fixed pointW of Zpλq cannot be of the form Zpβq
`

M̃px1x2 ¨ ¨ ¨xnq
˘

for any β P hWBn
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We can now state the final theorem of this section.

Theorem 4.3.8. The homotopy braid group hBn is torsion-free for any number of components n.

Proof. Suppose by contradiction that there is a torsion element in hBn. By Lemma 4.3.5 there exist
a prime number p ď n and some braid β P hWBp such that β´1λpβ is a classical braid, where
λp “ ρ1ρ2 ¨ ¨ ¨ ρp´1 P hWBp. In other words, according to Lemma 4.3.6 this conjugate must satisfy,

Z
`

β´1λβ
˘`

M̃px1x2 ¨ ¨ ¨xpq
˘

“ M̃px1x2 ¨ ¨ ¨xpq,

or equivalently,
Zpλq ˝ Zpβq

`

M̃px1x2 ¨ ¨ ¨xpq
˘

“ Zpβq
`

M̃px1x2 ¨ ¨ ¨xpq
˘

.

This implies that Zpβq
`

M̃px1x2 ¨ ¨ ¨xpq
˘

is a fixed point of Zpλq, which yields a contradiction by
Lemma 4.3.7.

It follows from Theorem 4.3.8 the well known result that the standard braid group Bn is torsion-
free for all n. To prove this corollary, we need the following well-known lemma, which essentially goes
back to Artin:

Lemma 4.3.9. The pure braid group Pn is torsion-free for any number of components n.

Proof. The pure braid group Pn can be expressed as a semi-direct product of free groups, known as
the Artin normal form. The procedure to obtain this normal form is known as braid combing and
is presented in [Art47]. Therefore, since free groups are torsion-free, it simply follows that Pn is
torsion-free.

We recover in this way a result of E. Fadell and L. Neuwirth (see Remark 4.3.11).

Corollary 4.3.10. The braid group Bn is torsion-free for any number of components n.

Proof. Let us consider the projection p : Bn Ñ hBn. Since hBn is torsion-free (Theorem 4.3.8), any
torsion element in Bn must belong to the kernel K :“ kerppq. However, it is clear from Proposition
2.2.2 that K Ă Pn, thus K is torsion-free by Lemma 4.3.9 and the proof is complete.

Remark 4.3.11. The study of torsion in braid groups dates back to E. Fadell and L. Neuwirth in
1962. Building upon topological methods, they show in [FN62, Theorem 8] that Bn is torsion-free
for every n. Subsequently, P. Dehornoy establishes the stronger property that Bn is left-orderable,
in [Deh94] which in particular implies that it is torsion-free. It should be noted that the question of
orderability for the homotopy braid group hBn remains open, constituting a future research direction
that we intend to explore.
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Chapter 5

Homology cobordisms and homology
cylinders

This chapter focuses on the study of homology cobordisms. Exploratory work is conducted to define
a notion of link-homotopy within this context. This pursuit holds significance as string-links and
braids share many common features with homology cobordisms, as discussed at the beginning of
Section 5.2. The chapter begins by defining the framework of homology cobordisms in Section 5.1
and subsequently explores several tentative definitions for link-homotopy in Section 5.2 and 5.3.

5.1 General definition

Let us denote by Σ a compact connected oriented surface of genus g. We assume for simplicity that
Σ has exactly one boundary component. Let us recall the definition of the mapping class group.

Definition 5.1.1. The mapping class group of the surface Σ, denoted by MpΣq, is the group of
isotopy classes of self-homeomorphisms of Σ that leave the boundary pointwise invariant.

Definition 5.1.2. Let c be a simple closed curve on Σ not necessarily oriented. We choose a closed
regular neighborhood N of c in Σ and we identify it with S1 ˆ r0,1s in such a way that orientations
are preserved. Then, the Dehn twist along c is the homeomorphism Tc : Σ Ñ Σ defined by:

Tcpxq “

"

x if x R N,
`

e2iπpθ`rq,r
˘

if x “ pe2iπpθq,rq P N.

We illustrate the effect of a Dehn twist on a small segment in Figure 5.1.
Dehn twists generate the mapping class group as stated in the following theorem.

Theorem 5.1.3. [Deh38] The mapping class group MpΣq is generated by Dehn twists along curves
which are non-separating (i.e., the surface given by Σ with the curve removed, has a single connected
component), or parallel to a boundary component.

The mapping class group of the surface Σ acts in a canonical way on the fundamental group
π :“ π1pΣ, ˚q based at a point ˚ on the boundary of Σ. The induced homomorphism

ρ : MpΣq Ñ Autpπq,
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c c

Tc

N N

Figure 5.1: The Dehn twist Tc along the simple closed curve c.

studied by Dehn–Nielsen is known to be injective. Moreover, for each k ě 0, it induces a representation

ρk : MpΣq Ñ Autpπ{Γk`1πq

where π “ Γ1π Ą Γ2π Ą Γ3π Ą ¨ ¨ ¨ , denotes the lower central series of π; i.e., the sequence of
subgroups defined by :

"

Γ1π “ π,
Γk`1π “ rΓkπ,πs.

We refer to those representations as the nilpotent Dehn–Nielsen representations. The Johnson
filtration of the mapping class group is the decreasing sequence of subgroups

MpΣq “ MpΣqr0s Ą MpΣqr1s Ą MpΣqr2s Ą MpΣqr3s Ą ¨ ¨ ¨ , (5.1)

where MpΣqrks denotes the kernel of ρk for all k ě 1.

Definition 5.1.4. The first subgroup in this filtration, denoted by MpΣqr1s, is referred to as the
Torelli group of the surface Σ. In simple terms, it is the subgroup of homeomorphisms of Σ that act
trivially on its homology.

Theorem 5.1.5. [Bir71, Pow78] The Torelli group of Σ is generated by two types of Dehn twists:

- separating twists: Dehn twists along separating curves, i.e., curves that divide the surface into
two sub-surfaces.

- bounding pair maps: The composition of a Dehn twist along a non-separating curve and the
inverse Dehn twist along another non-separating curve, disjoint from the first one but having
the same homology class.

Let us now define the main objects of the section : homology cylinders.

Definition 5.1.6. A homology cobordism over Σ is a pair pC, iq, where C is a compact connected
oriented 3-manifold and i : BpΣ ˆ r´1,1sq Ñ BC is an orientation-preserving homeomorphism such
that the inclusion i˘ : Σ Ñ M defined by x ÞÑ ipx, ˘ 1q induce isomorphisms H˚pΣ;Zq Ñ H˚pC;Zq.
Thus the 3-manifold C is a homology cobordism between B`C :“ i`pΣq and B´C :“ i´pΣq.
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For simplicity, we often denote the homology cobordism pC,iq by C, in particular, we denote the
trivial homology cobordism pΣˆ r´1, 1s, Idq simply by Σˆ r´1, 1s. We call homology cylinders of
Σ the homology cobordisms for which the composition pi´q´1 ˝ pi`q is the identity of H˚pΣ;Zq.

We say that two homology cobordisms are homeomorphic if there is an orientation-preserving
homeomorphism f : C Ñ C 1 such that f |BC ˝ i “ i1. The composition ‘˝’ of two homology cobordisms
C and C 1 is defined by ‘stacking’ C 1 on top of C, i.e., we define

C ˝ C 1 :“ C Yi`˝pi1
´q´1 C 1,

with B´pC ˝ C 1q “ B´pCq parameterized by i´ and B`pC ˝ C 1q “ B`pC 1q by i1`. With this operation,
the set of homeomorphism classes of homology cobordisms of Σ, denoted by CpΣq, forms a monoid.
The set of homeomorphism classes of homology cylinders of Σ, denoted by ICpΣq is a submonoid
of CpΣq. Moreover, the mapping class group is embedded in CpΣq using the mapping cylinder
construction ι : MpΣq Ñ CpΣq, defined as follows:

ιpϕq :“
´

Σ ˆ r´1, 1s,
`

Id ˆ t´1u
˘

Y pBΣ ˆ Idq Y
`

ϕ ˆ t1u
˘

¯

.

In fact, the image of ι is the group of invertibles in the monoid CpΣq, see [HM12, Proposition 2.4].
Similarly, the Torelli group embeds in ICpΣq through the same mapping cylinder construction.

Thanks to Stallings’ theorem [Sta65] we can extend the nilpotent Dehn–Nielsen representations
to homology cobordisms.

Theorem 5.1.7. [GL05, Theorem 3] For any homology cobordism C P CpΣq and any k P N, the
composition pi´q´1 ˝ pi`q induces a homomorphism:

ρk : CpΣq Ñ Autpπ{Γk`1πq.

Note that the restriction of this morphism to ιpMpΣqq coincides with the previously defined Dehn–
Nielsen representation, justifying the continued use of the same notation. Furthermore, if we denote
by CpΣqrks :“ kerpρkq, we obtain a decreasing sequence of submonoids:

CpΣq “ CpΣqr0s Ą CpΣqr1s Ą CpΣqr2s Ą CpΣqr3s Ą ¨ ¨ ¨

which extends the filtration (5.1), and is still referred to as the Johnson filtration.

5.2 Link-homotopy in an algebraic way

There is a strong analogy between homology cobordisms and string-links. Firstly, the pure braid
group (which can be defined as the mapping class group of the punctured disk), forms the subgroup
of invertibles in the string-links monoid, as does the mapping class group of Σ for the monoid CpΣq.
Moreover, as discussed in [GL05, Remark 5.3], CpΣq can be converted into a group by considering their
homology cobordism classes, similarly as string-links do up to concordance. Finally, Milnor string-
links invariants, appears as the analogues of the homomorphisms ρk, as pointed in [GL05, Remark
2.6] and [Hab00a]. See [Ver21, Section 2.4] for a good exposition of this so-called Milnor-Johnson
correspondence. In light of this correspondence, it is thus natural to investigate an analogue of the
link-homotopy relation of string-links in the context of homology cobordisms.
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5.2.1 Reduced group

To establish a notion of link-homotopy for homology cylinders, or more generally for homology cobor-
disms, it is natural, at the algebraic level, to consider them as automorphisms of the reduced free
group. Since the fundamental group of Σ, is a free group, Theorem 5.1.7 seems to be a good first step
in this direction. Let us fix the family of generators x1, y1, . . ., xg, yg, illustrated in Figure 5.2.

x1 y1 xg yg 

Figure 5.2: Generators x1, y1, . . ., xg, yg of π.

We recall from Proposition 1.2.5 the subgroup J :“ Jπ of π generated by commutators in
x1, y1, . . . , xn, yn with repeats and the reduced quotient of π given by Rπ :“ π{J . We make
the observation that, for k ě 2g, Rπ is given by the quotient of π{Γk`1π by J{Γk`1π. This follows
from the fact that any commutator of weight greater than 2g has repeats and therefore Γk`1π Ă J .
Then for k ě 2g we may hope that ρk will be turned into a homomorphism from CpΣq to AutpRπq.
The only condition that must be verified to do so is that for any homology cobordism C we have:

ρkpCqpJ{Γk`1πq “ J{Γk`1π. (5.2)

Moreover, if the homology cobordism Cϕ is given by a mapping cylinder construction, i.e., Cϕ “ ιpϕq

for some ϕ P MpΣq, then it induces an automorphism of the free group ρpCϕq :“ ρpϕq, and to see it
as an element of AutpRπq, we simply need:

ρpCϕqpJq “ J. (5.3)

But this is not the case in general as the following two counter-examples show. Let us set Σ2,1 the
surface with genus g “ 2 and one boundary component.

Counter-example 5.2.1. We consider the mapping cylinder ιpTcq of the Dehn twist Tc along the
simple closed curve c, illustrated in Figure 5.3.

This element, denoted by Cc, seen as an automorphism of the fundamental group, is given by:

ρpCcq : π Ñ π
x1 ÞÑ x1,
y1 ÞÑ y1,
x2 ÞÑ x2,
y2 ÞÑ y2x2.

We compute the image of the commutator with repeats rrx1,y2s,y2s P J by the automorphism ρpCq:

ρpCcqprrx1,y2s,y2sq “ rrx1,y2x2s,y2x2s.
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c

Figure 5.3: The closed curve c.

This element, seen as an element of the reduced free group, has normal form (Definition 1.2.7) given
by:

ρpCcqprrx1,y2s,y2sq ” rrx1,x2s,y2srrx1,y2s,x2s,

By uniqueness of the normal form (Theorem 1.2.10), the image ρpCcqprrx1,y2s,y2sq does not belong to
J . Therefore condition (5.3) is not verified, and we cannot see Cc as an automorphism of the reduced
free group.

But the homology cobordism in Counter-example 5.2.1 is not a homology cylinder, and one might
expect the desired construction to be satisfied by these objects. However, as shown in Counter-
example 5.2.2, we still have the same problem for homology cylinders.

Counter-example 5.2.2. Consider the homology cylinder Ca,b :“ ιpT´1
a ˝ Tbq, where Ta and Tb are

the Dehn twists along the simple closed curves a and b, illustrated in Figure 5.4. Note that pa,bq forms
a genus one bounding pair.

a
b

Figure 5.4: The bounding pair (a,b).

This homology cobordism, induces an automorphism on the fundamental group given by:

ρpCa,bq : π Ñ π

x1 ÞÑ x2ry1,x
´1
1 sx1rx´1

1 ,y1sx´1
2

y1 ÞÑ x2ry1,x
´1
1 sy1rx´1

1 ,y1sx´1
2

x2 ÞÑ x2ry1,x
´1
1 sx2rx´1

1 ,y1sx´1
2

y2 ÞÑ y2x2rx´1
1 ,y1sx´1

2
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We have that:

ρpCa,bq

´

“

rx2,y2s,y2
‰

¯

”

„

”

“

rx1,y1s,x2
‰

x2,y2
“

x2,ry1,x1s
‰

ry1,x1s

ı

,y2
“

x2,ry1,x1s
‰

ry1,x1s

ȷ

mod rJs

”

”

“

x2,y2ry1,x1s
‰

,y2ry1,x1s

ı

mod rJs

”
“

rx2,y2s,ry1,x1s
‰

”

“

x2,ry1,x1s
‰

,y2

ı

mod rJs

”

”

“

rx1,y1s,y2
‰

x2

ı”

“

rx1,y1s,x2
‰

y2

ı´2
mod rJs

and once again we come across a normal form which is not that of the trivial element. Hence this
homology cobordism does not induce an automorphism of the reduced fundamental group.

To address the issue highlighted by Counter-examples 5.2.1 and 5.2.2, we aim to identify another
normal subgroup, denoted as HŸπ, such that homology cobordisms can be viewed as automorphisms
of the quotient group π{H. Our objective is twofold: firstly, we require that for any sufficiently large
integer k ą 0, the subgroup Γkπ is contained within H to leverage the applicability of Theorem
5.1.7. Secondly, to ensure the quotient’s relevance in terms of link-homotopy, we seek a reduced-type
quotient, meaning that some elements commute with their conjugates. As a result, in the subsequent
section, we are led to consider the notion of fully reduced group.

5.2.2 Fully reduced group

In this section, we extend the definition of reduced groups in order to obtain a quotient which does
not depend on a chosen family of generators.

Definition 5.2.3. Let G be a group and let us define H Ÿ G to be the normal subgroup generated by
elements of the form rω,λωλ´1s, for any ω,λ P G. We call fully reduced quotient, the quotient
G{H and we denote it by RFG. Roughly speaking, RFG is the quotient of G in which any element
commutes with its conjugates.

Proposition 5.2.4. For any group G and any x,y,z P RFG, the following equalities hold in RFG:

p1q rx´1,ys “ rx,ys´1 “ rx,y´1s;
p2q

“

rx,ys,z
‰“

rz,xs,y
‰“

ry,zs,x
‰

“ 1;

p3q
“

rx,ys,z
‰

“
“

rx,zs,y
‰´1

.

Proof. The first equality corresponds to the following fully reduced relations:

x´1yxy´1 “ yxy´1x´1 “ xy´1x´1y.

For the second relation we recall first the well known Hall–Witt identity:

x´1
“

ry,x´1s,z
‰

x ¨ z´1
“

rx,z´1s,y
‰

z ¨ y´1
“

rz,y´1s,x
‰

y “ 1.

Then we turn all the factors into the desired ones. For example, applying p1q to
“

ry,x´1s,z
‰

yields
“

rx,ys,z
‰

, which is equal to its conjugate by x due to the fully reduced quotient relations. Finally,
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the last equality is derived from the observation that, on the one hand, the commutator
“

rx,yzs,yz
‰

is trivial in RFG and, on the other hand, that we have the two equalities

“

a,rb,cs
‰

“ ra,bs
“

c,ra,bs
‰

ra,cs,
“

rc,bs,a
‰

“
“

b,rc,as
‰

rc,asrb,as,

for any a, b, c in any group G. Then, by iterating these relations we rewrite the commutator
“

rx,yzs,yz
‰

as a product of commutators in x, y, and z. However, commutators of degree four or higher necessarily
contain repetitions and are therefore trivial in RFG. Consequently, we ultimately find that

“

rx,yzs,yz
‰

“
“

rx,ys,yz
‰“

rx,ys,z
‰“

rx,zs,y
‰

.

Proposition 5.2.5. For any group G and any triple x, y, z P RFG we have that:

“

rx,ys,z
‰3

“ 1

Proof. We start with equality p3q from Proposition 5.2.4, and then apply p1q from Proposition 5.2.4
twice:

“

rx,ys,z
‰

“
“

rx,zs,y
‰´1

,

“
“

rx,zs´1,y
‰

,

“
“

rz,xs,y
‰

.

Similarly we have that
“

rx,ys,z
‰

“
“

ry,zs,x
‰

,

then we conclude using p2q from Proposition 5.2.4.

In view of Proposition 5.2.5, it would seem that the fully reduced quotient is not suitable for our
study. Too much information is lost, and it is unlikely that link-homotopy translates algebraically
into this quotient. To convince ourselves, let us take a look at what the ‘fully reduced’ condition
generates in the context of braids. Recall from Corollary 2.2.6 that the pure homotopy braid group
hPn is given by taking the reduced quotient of the pure braid group generated by the generators Aij

for 1 ď i ă j ď n. We consider first some relations of the fully reduced pure braid group RFPn.

Proposition 5.2.6. If we set three indices 1 ď r ă i ă j ď n then the associated pure braids
generators in RFPn satisfy:

rAri,Arjs “ rArj ,Aijs “ rAij ,Aris.

For any distinct pairs of indices tr,iu X ts,ju “ H, in RFPn, we also have that:

rAri,Asjs “ 1

Proof. The first relations are already true in hPn “ RPn, as mentioned in Theorem 2.2.6, so they
must hold in RFPn. The other equality is also verified most of the time in hPn “ RPn, with the only
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remaining case being, without loss of generality, when 1 ď r ă s ă i ă j ď n. In that case, according
to Theorem 2.2.6, we have:

rAri,Asjs “ rrAij ,Arjs,Asjs,

which we rewrite using the inverse of the first relation as:

rAri,Asjs “ rrArj ,Aris,Asjs.

Then applying relation (1) and (3) from Proposition 5.2.4 as we did in the proof of Proposition 5.2.5
we get,

rAri,Asjs “ rrAri,Asjs,Arjs.

And finally we conclude using Theorem 2.2.6 again,

rAri,Asjs “ rrrAij ,Arjs,Asjs,Arjs “ 1,

where the last equality holds since we have a commutator with repeats.

Lemma 5.2.7. The fully reduced pure braid group RFPn is nilpotent of order 3.

Proof. Set Aij , Ars and Akl three generators in RFPn. We simply need to show that the commutator
C “ rAkl,rArs,Aijss is trivial in RFPn. First, according to the second equality from Proposition 5.2.6,
the commutator rArs,Aijs is trivial if ti,ju X tr,su “ H. Otherwise, we can suppose without loss of
generality that j “ s. We get then

C “ rAkl,rArj ,Aijss “ rAkl,rAij ,Ariss “ rAkl,rAri,Arjss.

Then, using p2q from Proposition 5.2.4 we also have that

C´1 “ rArj ,rAkl,Aijss “ rAij ,rAkl,Ariss “ rAri,rAkl,Arjss.

Now using the second relation from Proposition 5.2.6 again, we have that C is trivial if one of the
following equalities hold

tk,lu X ti,ju “ H, tk,lu X tr,iu “ H, tk,lu X tr,ju “ H.

If none of these equalities holds, then we have tk,lu “ ti,ju, or tk,lu “ tr,iu, or tk,lu “ tr,ju and C
is also trivial.

Theorem 5.2.8. The fully reduced pure braid group RFPn coincides with the third nilpotent quotient
of the pure braid group.

Proof. According to Lemma 5.2.7 we only need to prove that the commutator rω,λωλ´1s belongs to
the third subgroup of the lower central series. That is shown by the following computation:

rω,λωλ´1s “ ωλωλ´1ω´1λω´1λ´1 “ ωrλ,ωsω´1rω,λs “ rω,rλ,ωss
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5.3 Link-homotopy using graph-claspers

In this section, we once again attempt to broaden the concept of link-homotopy within the context of
homology cobordisms. We draw inspiration from the characterization in terms of repeated claspers
(see Lemma 1.1.10). With this objective in mind, let us first define graph-claspers within the context
of homology cylinders. To provide a rough comparison, claspers, as defined in Chapter 1, are distin-
guished from graph-claspers by their leaves: previously, they were disks intersecting tangle strands,
whereas now they are framed knots.

5.3.1 Graph-claspers

Let M be a compact oriented 3-manifold.

Definition 5.3.1. A connected surface G smoothly embedded in the interior of M is called a graph-
clasper in M if it can be decomposed into leaves, nodes, and edges as follows:

• Edges are 1-handles that connect leaves and/or nodes, and each edge having two ‘ends’, namely
the attaching loci of the 1-handle.

• Leaves are framed knots, i.e., embeddings of annuli. Each leaf should have precisely one end of
an edge attached to it.

• Nodes are discs, and each node should have exactly three ends of edges attached to it.

When provided with a graph-clasper G Ă M , we can omit its leaves and collapse the remainder
into a one-dimensional graph. This process results in a uni-trivalent graph known as the shape of G.
Graph-claspers whose shape is a tree graph are called tree-claspers.

As before, we depict graph-claspers diagrammatically, as shown in Figure 5.5, for example. To

Figure 5.5: Diagram of a graph-clasper.

recover the represented graph-clasper, simply thicken the diagram using the blackboard framing
convention. The nodes are represented by large dots and are thickened according to Figure 5.6.
Additionally, we use markers called twists to indicate the presence of half-twists (see Figure 5.7).

Finally, we also use boxes, a graphical convention representing the entanglement of three leaves,
as depicted in Figure 5.8.

Definition 5.3.2. Let G be a graph-clasper in M . We define the degree of G, denoted by degpGq,
as its number of nodes. Graph-claspers of degree 0 consist of only one edge and two leaves, see Figure
5.9.
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Figure 5.6: The diagrammatic node thick-
ening pattern.

Figure 5.7: The diagrammatic negative and posi-
tive twist thickening patterns.

Figure 5.8: Leaf arrangement corresponding to a box.

Figure 5.9: A degree 0 graph-clasper.

We stress that the notion of degree only makes sense for graph-claspers, which are connected
surfaces decomposed into nodes, edges, and leaves. In particular, boxes can be misleading in this
respect; they must be thought of as the junction of three claspers.

Given a disjoint union of graph-claspers F in M , there is a procedure called surgery detailed in
[Hab00b] to construct a new manifold denoted MF . First, we replace each node with three leaves
forming a copy of the Borromean rings, as shown in Figure 5.10. This yields a union of degree 0

⟶

Figure 5.10: Replacing nodes by Borromean ring leaves.

graph-claspers. Next, we replace each degree-zero clasper with a two-component framed link, as
shown in Figure 5.11. Finally, we apply Dehn surgery along the resulting framed link to obtain MF .

⟶

Figure 5.11: An example of a diagrammatic graph-clasper.

Let us recall some clasper calculus from [Hab00b].
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Proposition 5.3.3. [Hab00b, Proposition 2.7] The set of moves on graph-claspers depicted in Figure
5.12 yields surgery results that are isotopic.

∼ ∼(3) (3) ∼(4) ∼(5)
∼(2) ∼(2)∼(1)∼(0) ∅

Figure 5.12: Some moves of clasper calculus.

Definition 5.3.4. We call Yk-equivalence the equivalence relation on 3-manifolds generated by
surgery on graph-claspers of degree at least k and ambient isotopies. We use the notation

M „
Yk

M 1

to mean that the two manifolds M and M 1 are Yk-equivalent.

Surgery along a degree 1 graph-clasper, coincides with the Borromean surgery introduced by S.
Matveev [Mat87]. It follows from the main result of [Mat87] that any integral homology sphere is
Y1-equivalent to S3.

5.3.2 Homology cylinders and graph-claspers

We now delve back into the realm of homology cobordisms, specifically focusing on the set of homology
cobordisms that are Yk-equivalent to Σˆr´1,1s, denoted as CkpΣq. These sets are indeed submonoids
of CpΣq (see [Gou99, Hab00b]). Remarkably, as shown in [MM03, Section 4.1], the first of these
submonoids coincides with the monoid of homology cylinders, i.e.,

C1pΣq “ ICpΣq.

In other words any homology cylinders C P ICpΣq can be presented by a union of graph-claspers
in Σ ˆ r´1,1s, meaning there exists a disjoint union of graph-clasper F in Σ ˆ r´1,1s such that
C “ pΣ ˆ r´1,1sqF . Additionally, as for example stated in [HM12, Proposition 5.4], the resulting
Y-filtration

CpΣq “ C0pΣq Ą C1pΣq Ą C2pΣq Ą C3pΣq Ą ¨ ¨ ¨

is finer than the Johnson filtration, in the sense that for any k,

CkpΣq Ă CpΣqrks.
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5.3.2.1 Link-homotopy for homology cylinders I

As mentioned in the introduction, link-homotopy is closely related to the notion of concordance. In-
deed, it constitutes a more flexible equivalence relation. More precisely, if two links are concordant,
then they are also link-homotopic. Therefore, in order to define a notion of link-homotopy for homol-
ogy cobordisms, it seems natural to begin by examining the analogue of concordance for homology
cylinders, and its interpretation in terms of graph-claspers

Definition 5.3.5. Two homology cobordisms pC1, i1q and pC2, i2q over Σ are homology cobordant
if the closed, oriented 3-manifold obtained by gluing C1 and the reverse of C2 (i.e., C1 Yi1˝i´1

2
p´C2q)

bounds a compact, oriented smooth 4-manifold W in such a way that both inclusions C1 Ă W and
C2 Ă W induce homology isomorphisms. Here, ´C2 represents the homology cobordism given by
reversing the orientation of C2 together with the homeomorphism i2 ˝ τ , where τ is the involution of
Σ ˆ r´1,1s defined by τpx,tq “ px, ´ tq.

Being homology cobordant defines an equivalence relation among homology cobordisms, which
is consistent with their composition. The resulting quotient monoid is known as the homology
cobordism group and is denoted as HCpΣq (see [GL05]). As the name suggests, this monoid forms
a group, with the inverse of an element C given by ´C. Moreover, by considering homology cylinders,
we obtain a subgroup of HCpΣq denoted as HICpΣq. The homology cobordism class of a homology
cobordism refers to its equivalence class as an element of the homology cobordism group.

Theorem 5.3.6. [Lev01, Theorem 2] Surgery along graph-claspers that are not tree-claspers does not
change the homology cobordism class of a homology cobordism.

Remark 5.3.7. Theorem 5.3.6 implies that in order to define a notion of link-homotopy which is
consistent with the homology cobordism group, it is necessary that surgeries induced by graph-claspers
that are not tree-claspers do not change the link-homotopy class of a homology cobordism.

Let us fix B “ ta1, b1, . . . , ag, bgu a symplectic basis of the first homology group H1pΣ;Zq

illustrated in Figure 5.13. We can see a leaf of a graph-clasper in Σ ˆ r´1,1s, as an element of

a1 b1  ag bg 

Figure 5.13: Symplectic basis B “ ta1, b1, . . . , ag, bgu of H1pΣ;Zq.

H1pΣ;Zq. From this interpretation, we can define a first tentative notion of repeated graph-clasper.

Definition 5.3.8. A graph-clasper G in Σ ˆ r´1,1s, has repeats if at least two of its leaves, seen as
element of H1pΣ;Zq, belong to the generators a1 ,b1, . . ., ag, bg and are equal.
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Remark 5.3.9. We could have proposed a larger definition of repetition, in which the leaves only
need to represent the same element of H1pΣ;Zq. However, we will not delve further as the seemingly
finer notion of Definition 5.3.8 already proves unsatisfactory. Indeed, we show in Example 5.3.11
that the link-homotopy based on repeated claspers from Definition 5.3.8 corresponds almost to the
Y2-equivalence.

Definition 5.3.10. Let us consider two disjoint unions of graph-claspers F1 and F2 in Σ ˆ r´1,1s.
Suppose that F1 differs from F2 by either graph-claspers that are not tree-claspers or tree-claspers
with repeats. We say that the two homology cylinders given by pΣˆ r´1,1sqF1 and pΣˆ r´1,1sqF2 are
link-homotopic.

Example 5.3.11. The series of equivalences presented in Figure 5.14 demonstrates that the link-
homotopy, as defined in Definition 5.3.10, nearly implies the Y2-equivalence. To be more specific, any
degree-2 clasper with one of its leaves matching one of the generators a1, b1, . . ., ag, bg of H1pΣ;Zq,
is trivial up to link-homotopy. Let us take a closer look at these equivalences. The first pair of graph-∼ ∼ ∼

l-h
ak

ak

G1 G2

Figure 5.14: The link-homotopy from Definition 5.3.8 imply the Y2-equivalence.

claspers, G1YG2, is trivial up to link-homotopy. Indeed, the graph-clasper G1 has repeats and can thus
be deleted up to link-homotopy; this leaves us with the graph-clasper G2, containing a leaf bounding a
disk, which is thus trivial by moves p0q from Proposition 5.3.3. Subsequently, we apply more clasper
calculus from Proposition 5.3.3. The first equivalence is given by moves p5q and p1q, which introduce
a box. The next equivalence involves applying move p2q to this box. Applying move p4q twice yields a
new graph-clasper with repeats. Finally, we remove it up to link-homotopy and use move p3q to obtain
the last equivalence.

Example 5.3.11 shows that any degree 2 tree-clasper, having a leaf representing a generator ai or
bi for some i, can be deleted up to link-homotopy. Therefore, Definition 5.3.10 is not satisfactory, and
we need to find a weaker definition of link-homotopy that provides better control over the nature of
leaves with repeats.

5.3.2.2 Link-homotopy for homology cylinders II

The above tentative definitions of link-homotopy proved unsatisfactory, leading us to an even more
constrained notion (see Definition 5.3.14). The latter is based on the simplification of leaves developed
in [GGP01, Section 4.3]. Please note that the convention utilized in [GGP01] for surgery along a graph
clasper, is the opposite to the convention used in this thesis.
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Lemma 5.3.12. [GGP01, Corollary 4.3] Let G be a graph-clasper of degree k in Σ ˆ r´1,1s, and let
l be a leaf of G. An arc α starting at the external vertex incident to l and ending at another point
on l splits l into two arcs, l1 and l2. Denote by G1 and G2 the graph-claspers obtained from G by
replacing the leaf l with l1 Y α and l2 Y α respectively, see Figure 5.15. Then

`

Σ ˆ r´1,1s
˘

G
„

Yk`1

`

Σ ˆ r´1,1s
˘

G1
¨
`

Σ ˆ r´1,1s
˘

G2
.

®

G G1 G2
Figure 5.15: Graph-claspers G, G1 and G2 of Lemma 5.3.12.

The idea is to apply Lemma 5.3.12 and clasper calculus, in order to reexpress, up to higher degree
graph-claspers, any disjoint union of tree-claspers in Σˆr´1,1s as a product of ‘simpler’ tree-claspers,
with leaves of two specific types:

- B-leaves: leaves that are parallel copies of the curves ai or bi, framed along Σ and pushed
inside Σ ˆ r´1,1s,

- Special-leaves: leaves which bound a disk disjoint from the rest of the tree-clasper and which
are p´1q-framed.

Figure 5.16: A B-leaf. Figure 5.17: A special-leaf.

The fact that we can reduce the study to these two types of leaves only, follows from the same
arguments as in [GGP01, Section 4.3].

Let us now define the notion of a simple tree-clasper using these two types of leaves. It is important
to note that the term ‘simple’ also appears in [Hab00b], but we use it here in a different way.

Definition 5.3.13. Given a disjoint union of graph-claspers F in Σˆr´1,1s, a simple tree-clasper
T , is a tree-clasper that lives in a ‘slice’ Σ ˆ r´ϵ,ϵs of Σ ˆ r´1,1s which is disjoint from GzT , and
such that all of its leaves are either B-leaves or special-leaves.

Note that, in particular, having repeats for a simple tree-clasper means that it contains two
B-leaves that are parallel copies of the same curve.
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Definition 5.3.14. We define the link-homotopy relation between homology cylinders, presented
by unions of graph-claspers in Σ ˆ r´1,1s, as the equivalence relation generated by surgeries on the
three following types of graph-claspers:

- Graph claspers that are not trees,

- Graph claspers of degree at least 2g ´ 1,

- Simple tree-claspers having repeats.

Let us discuss the three types of surgeries generating the link-homotopy relation in Definition
5.3.14.

Firstly, in accordance with Remark 5.3.7, surgeries on graph-claspers that are not tree-claspers
must preserve homology cylinders up to link-homotopy.

Secondly, as mentioned earlier, the procedure of simplification of leaves works up to higher-degree
tree-claspers. To ensure the termination of this procedure, it is necessary to eliminate all claspers
beyond a certain degree. The degree 2g ´ 1, which corresponds to tree-claspers with 2g ` 1 leaves,
appears to be the suitable degree for this purpose. To justify this choice, we draw upon the analogy
between string-links and homology cobordisms discussed at the beginning of Section 5.2. In the case
of string-links with n components, Cn-equivalence implies link-homotopy: claspers with n ` 1 leaves
inevitably have repeats and are thus trivial up to link-homotopy. Analogously, since H1pΣ;Zq has
rank 2g, it seems natural to eliminate all graph claspers with 2g`1 leaves, which precisely corresponds
to graph-claspers of degree at least 2g ´ 1.

Finally, we eliminate tree-claspers with repetitions once the clasper union is rewritten as a product
of simple tree-claspers.

All the constraints discussed previously lead us to Definition 5.3.14, which, although somewhat
unnatural, appears to be a promising candidate for a theory of link-homotopy for homology cylinders.
We will not pursue this study further here, but consider this notion as a possible starting point for
future research in this direction.

Remark 5.3.15. The definition of link-homotopy in terms of simple tree-clasper, can probably be
further refined. Indeed, such claspers containing a special leaf, can often be deleted up to higher order
claspers; see [GGP01, Lemma 4.9]. As a matter of fact, the latter result, combined with the Slide
move for special leaves [GGP01, Theorem 3.1], seem to suggest that only degree 1 graph-claspers with
three special leaves would remain.
The first Johnson homomorphism does not detect these particular tree-claspers, as shown in [MM03],
which seems to conflict with the Milnor-Johnson correspondence. Indeed, Milnor string-link invariants
provide a complete link-homotopy invariants.
This suggests a possible adjustment of Definition 5.3.14 making these degree 1 tree-claspers trivial up
to link-homotopy. However, this would further complicate the already involved Definition 5.3.14. An
alternative would be to keep the definition unchanged, knowing that these tree-claspers are 2-torsion
element and can be detected by the Rochlin invariant. In other words, we can group these terms
together up to isotopy and eliminate them pairwise: parity is determined by the Rochlin invariant, as
shown in [MM03].
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Appendix A

Code of the proof of Theorem 2.4.19

import itertools

# The first part of the program is dedicated to the computation of the

# representation $\gamma$. In the following functions, the variable ’Commu’ is a

# sequence [i1,...,im] representing the commutator (i1,...,in) in $\mathcal{V}$.

# The variable ’Index’ is an integer representing the index of the homotopy braid

# generator $\sigma_i$.

# The first function, IHX, serves as a preparatory function for the upcoming

# computation. Then the two functions Gamma_plus and Gamma_minus compute

# \gamma(\sigma_i)(i_1,...,im) and \gamma(\sigma_i^{-1})(i_1,...,im) and return a

# list of lists in the form [[coef1,I1],[coef2,I2],...,[coefm,Im]], corresponding

# to the linear combination coef1(I1)+coef2(I2)+...+coefm(Im) in $\mathcal{V}$.

def IHX(SubCommu,Commu):

return([[Commu[0]+1,*Commu[1:Commu[0]],SubCommu[0],*Commu[Commu[0]:]],

[*Commu[:Commu[0]+1],SubCommu[0],*Commu[Commu[0]+1:]]])

def Gamma_plus(Index,Commu):

k=-1

l=-1

j=0

while (k+1)*(l+1)==0 and j<len(Commu):

if Commu[j]==Index :

k=j

if Commu[j]==Index+1:

l=j

j+=1

if l==-1:

if k==-1:

return([[1]+Commu])

return([[1,*Commu[:k],Index+1,*Commu[k+1:]]])
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if k==-1:

Commu0=[*Commu[:l],Index,*Commu[l+1:]]

Commu1=[*Commu[:l],Index,*Commu[l:]]

if l>0:

Commu2=[*Commu[:l+1],Index,*Commu[l+1:]]

return([[1]+Commu0,[1]+Commu1,[-1]+Commu2])

return([[1]+Commu0,[1]+Commu1])

if k>0:

if k<l:

return([[1,*Commu[:k],Index+1,*Commu[k+1:l],Index,*Commu[l+1:]]])

return([[1,*Commu[:l],Index,*Commu[l+1:k],Index+1,*Commu[k+1:]]])

J=Commu[1:l]

J.reverse()

L=[[2,Index,*Commu[l:]]]

while J!=[]:

L=[IHX(J,K)[j] for K in L for j in range(0,2)]

J=J[1:]

for K in L:

K[0]=(-1)**(K[0]+1)

return(L)

def Gamma_minus(Index,Commu):

k=-1

l=-1

j=0

while (k+1)*(l+1)==0 and j<len(Commu):

if Commu[j]==Index :

k=j

if Commu[j]==Index+1:

l=j

j+=1

if k==-1:

if l==-1:

return([[1]+Commu])

return([[1,*Commu[:l],Index,*Commu[l+1:]]])

if l==-1:

Commu0=[*Commu[:k],Index+1,*Commu[k+1:]]

Commu1=[*Commu[:k+1],Index+1,*Commu[k+1:]]

if k>0:

Commu2=[*Commu[:k],Index+1,*Commu[k:]]

return([[1]+Commu0,[1]+Commu1,[-1]+Commu2])

return([[1]+Commu0,[1]+Commu1])

if k>0:

if k<l:
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return([[1,*Commu[:k],Index+1,*Commu[k+1:l],Index,*Commu[l+1:]]])

return([[1,*Commu[:l],Index,*Commu[l+1:k],Index+1,*Commu[k+1:]]])

J=Commu[1:l]

J.reverse()

L=[[2,Index,*Commu[l:]]]

while J!=[]:

L=[IHX(J,K)[j] for K in L for j in range(0,2)]

J=J[1:]

for K in L:

K[0]=(-1)**(K[0]+1)

return(L)

# The next functions, Proj_gamma_generator and Proj_gamma, compute the

# representation on any linear combination of commutators in $\mathcal{V}$. More

# precisely, these functions compute the projection onto the subspace generated

# by commutators of length lower or egual to k. Furthermore, the second function,

# Proj_gamma, computes the representation on any homotopy braid $\beta=\sigma_{i1}

# \sigma_{i2}...\sigma_{im}$ encoded by the variable Braid=[i1,i2,...,im].

def Proj_gamma_generator(k,Index,Linear_combi):

if Index>0:

return([[Y[0]*I[0]]+Y[1:] for I in Linear_combi

for Y in Gamma_plus(Index,I[1:])

if len(I)<=k+1 if len(Y)<=k+1])

if Index<0:

return([[Y[0]*I[0]]+Y[1:] for I in Linear_combi

for Y in Gamma_minus(-Index,I[1:])

if len(I)<=k+1 if len(Y)<=k+1])

return([[]])

def Proj_gamma(k,Braid,Linear_combi):

Braid.reverse()

length=len(Braid)

for i in range(0,length):

Linear_combi=Proj_gamma_generator(k,Braid[i],Linear_combi)

j=0

while j<len(Linear_combi):

l=j+1

while l<len(Linear_combi):

if Linear_combi[j][1:]==Linear_combi[l][1:]:

Linear_combi[j][0]=Linear_combi[j][0]+Linear_combi[l][0]

Linear_combi.pop(l)

l-=1
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l+=1

if Linear_combi[j][0]==0:

Linear_combi.pop(j)

j-=1

j+=1

return(Linear_combi)

# We now define the Inverse, Commutator, and Simplification functions to perform

# operations on homotopy braids. The first two produce inverses and commutators

# of braids, while the Simplification function simplifies pairs of trivial

# generators $\sigma_i\sigma_i^{-1}$.

def Inverse(Braid):

length=len(Braid)

return([-Braid[length-i-1] for i in range(0,length)])

def Commutator(Braid1,Braid2):

return(Braid1+Braid2+Inverse(Braid1)+Inverse(Braid2))

def Simplification(Braid):

i=0

while i<len(Braid)-1:

if Braid[i]==-Braid[i+1]:

Braid.pop(i+1)

Braid.pop(i)

i-=2

i+=1

# The function Comb_clasper_generator constructs the comb-clasper (i, j) as a

# word in the homotopy braid generators $\sigma_i$. Similarly, the function

# Comb_clasper constructs the comb-clasper (i1, i2, ..., in) as a word in the

# homotopy braid generators $\sigma_i$.

def Comb_clasper_generator(i,j):

return([j-k for k in range(1,j-i)]+[i,i]+[-i-k for k in range(1,j-i)])

def Comb_clasper(I):

length=len(I)-1

T=Comb_clasper_generator(I[0],I[length])

for i in I[1:length]:

T=Commutator(T,Comb_clasper_generator(i,I[length]))

return(T)
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# In the final part of the program, we construct the family {\theta_k} of

# homotopy braids from Section 2.4.2. We begin with the Test, Lambda_action, and

# Filter functions, which, given a linear combination of commutators in

# \mathcal{V}, allow us to retain only those corresponding to comb-claspers in

# nice position. Subsequently, we end with the Torsion_candidate function,

# explicitly computing the braid \theta_{p-2} from Section 2.4.2. More precisely,

# the Torsion_candidate takes a prime number p as input and returns the braid

# \theta_{p-2} along with its image under the gamma representation. It is worth

# noting that if this image contains the element [coef, 1, 2, ..., p], and coef

# is not divisible by p, then it provides an obstruction to the presence of

# torsion in the homotopy braid group.

def Test(Commu,Orbit):

for Representative in Orbit:

if Commu==Representative:

return(1)

return(0)

def Lambda_action(Sequence):

S=[0]+Sequence[:-1]

return([j+Sequence[-1]-Sequence[-2] for j in S])

def Filter(Linear_combi):

i=0

while i<len(Linear_combi):

T=sorted(Linear_combi[i][1:])

Orbit=[]

for j in T[:-1]:

T=Lambda_action(T)

Orbit=Orbit+[T]

m=1

j=i+1

while j<len(Linear_combi):

if Test(sorted(Linear_combi[j][1:]),Orbit)==1:

Linear_combi.pop(j)

j-=1

m+=1

j+=1

i+=1

def Torsion_candidate(p):

Theta=[’lambda’]
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Braid=[-i for i in range(1,p)]

for k in range(2,p):

Braid_power_p=Braid*p

Simplification(Braid_power_p)

Image=Proj_gamma(k,Braid_power_p,[[1,p]])[1:]

Filter(Image)

for T in Image:

Theta=[T]+Theta

if T[0]>0:

Braid=T[0]*Comb_clasper(T[1:])+Braid

if T[0]<0:

Braid=-T[0]*Inverse(Comb_clasper(T[1:]))+Braid

Braid_power_p=Braid*p

Simplification(Braid_power_p)

Image=Proj_gamma(p,Braid_power_p,[[1,p]])[1:]

return(Theta,Image)
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