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Introduction

The origins of knot theory, which is the main topic of this thesis, are probably to be found in the
work of C. F. Gauss 1833 in electrodynamics. There, he defined the number of ‘intertwinings’ of two
trajectories and showed how this number, that we call today the linking number, can be computed by
a double integral. Several decades later two physicists, W. Thomson (lord Kelvin) and P. G. Tait, set
the foundations of knot theory, see [Sil06]. The former proposed a model of matter in which atoms are
represented by knot-shaped vortices, the type of the knot determining the atom’s physico-chemical
properties. To understand matter, it was therefore necessary to classify knots. This initiated the
work undertaken by Tait. He provided the first attempt of a classification of knots with less than ten
crossings. It was H. Poincaré at the end of the 19th century, who provided, the formal framework for
the study of knots, with the development of algebraic topology [Poi95].

Knot theory has the advantage of being inspired by real-life objects. It is the study of knots as
they are commonly understood: a piece of string tied in space. The two ends of the string are glued
together, so that the resulting knot cannot in general be trivially untied. We then seek to understand
the topology of the knot without worrying about its physical characteristics: length, strength, nature
of the string, etc. More rigorously, a knot is defined as a smooth embedding of the circle in the three-
dimensional ball. The simplest knot of all, pictured in Figure 1, is just the unknotted circle, which
we call the unknot or the trivial knot. The next simplest knot is called the trefoil knot, illustrated in
Figure 2.

Figure 1: The unknot. Figure 2: The trefoil knot.

We typically consider and study knots up to several kind of deformations (see below), for which
two questions naturally arise. If we give ourselves a knot, can we untie it? If we give ourselves two
knots, are they equivalent up to deformation? To answer these questions, we use the notion of knot
invariants. An invariant is a quantity (number, matrix, polynomial, etc.) associated to each knot,
such that if two knots are equivalent, the associated quantities are the same. In practice, it is the
contrapositive of this proposition that is used, i.e., if two knots do not have the same invariant, then
these knots are not equivalent up to the considered type of deformation.
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The first and main type of deformation considered by topologists is the notion of isotopy. We
say that two knots are isotopic if they are related by an ambient isotopy of the three-ball. This
transformation corresponds to manipulations that do not involve cutting or passing the string through
itself. Figure 3 gives an illustration of an ambient isotopy of the unknot. To date, no isotopy knot

Figure 3: Ambient isotopy untying a tangled unknot.

invariant is really satisfactory. They are generally incomplete in the sense that some non-isotopic
knots have the same invariant values. This is definitely the case for well-known invariants such
as the crossing number, the unknotting number, the genus, the Jones polynomial or the Alexander
polynomial. For some others, whether or not they are complete remains an open question. It is for
instance the case for the family of finite-type invariants. Finally, the fundamental group of the knot
complement, when endowed with the peripheral structure, forms a complete invariant [Wal68]; but
this invariant is difficult to handle, and determining whether two groups are isomorphic is no easy
matter either.

Another equivalence relation that later interested knot theorists is concordance, initially defined
in [FM66]. Two knots are concordant if they co-bound a cylinder smoothly and properly embedded
in B x [0,1], with B the three-dimensional ball, each knot lying respectively in B x {0} and B x {1}.
Isotopy implies concordance, it is therefore a more permissive notion, and a priori simpler to study. To
illustrate our point, let us present the connected sum operation on knots (more precisely, we consider
here oriented knots). Given two knots, we define their connected sum by removing a small arc from
each knot and then connecting the four endpoints two by two as in Figure 4. We stress that the

DL =C

Figure 4: The connected sum of two trefoil knots.

connected sum endows the set of knots up to concordance with an abelian group structure, whereas
up to isotopy we only obtain an abelian monoid. However, concordance is still very hard to study,
and is still poorly understood. In fact, we do not even know how to determine whether a knot is
trivial up to concordance, a property that qualifies it as slice knot. This question is the subject of R.
H. Fox’s famous ribbon/slice conjecture [Fox62]. This conjecture arose from the observation that any
ribbon knot, i.e., a knot bounding an immersed disk that admits only ribbon singularities, is always
concordant to the trivial knot.

Finally, let us consider link-homotopy, another type of deformation central to our study. It is
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a more permissive equivalence relation than the previous two, in the sense that concordance (and
therefore isotopy) implies link-homotopy. Link-homotopy was first studied in 1954 by J. W. Milnor in
[Mil54]. It is an equivalence relation on links (embedding of several circles, called components), that
allows continuous deformations during which two distinct components remain disjoint at all times,
but each component may self-intersect. We give in Figure 5 an example of a link-homotopy; the first
deformation in the figure is a self-crossing change, a local move that generates link-homotopy. Any

Figure 5: The Whitehead link is trivial up to link-homotopy.

knot is link-homotopic to the trivial one, but for links with more than one component this equivalence
relation turns out to be quite rich and intricate. Since J. W. Milnor’s seminal work, link-homotopy has
been the subject of numerous works in knot theory see e.g., [Gol74, Lev88, Orr89, HL90], but also more
generally in the study of co-dimension 2 embeddings (and in particular knotted surfaces in dimension
4) [MR85, BT99, AMW17] and link-maps (self-immersed spheres) [FR86, Kir88, Kos90, ST19]. In
this manuscript, we are interested in the study of link-homotopy for various objects of low-dimensional
topology: braids and links in the classical and welded cases. We will also investigate the notion of
link-homotopy for homology cobordisms.

The following paragraphs provide an overview of our work and its historical context. The content
of the thesis will be briefly outlined, along with the main results. Then, at the end of this introduction,
the precise structure of the various chapters will be presented.

Braids are ubiquitous objects that can be considered and defined from several points of view.
We recall here their geometrical definition due to E. Artin in [Art25]. Let us take a 2-dimensional
disk D and let us also take n aligned points pi,..., p, in the interior of D. An n-strand braid
B = (P, --.,n) is a smooth and proper embedding:

(Bus- -+, Bn) 1| ][0,1] = D x [0,1]

n

satisfying two conditions. Firstly, there exists an n-permutation 7, such that for any integer ¢, the
endpoints satisfy 3;(0) = (p;,0) and B;(1) = (pr(;),1). Secondly, for any ¢ € [0,1], the slice D x {t}
intersects § in exactly n points, see Figure 6. A braid is said to be pure if its associated permutation
7 is the identity.

E. Artin’s work focused mainly on braids up to isotopy (note that, in the context of braids, the
ambient isotopies are required to fix the boundary). In [Art47], he describes precisely the braid group.
This is the group obtained by endowing the set of braids up to isotopy with the braid composition,
an operation illustrated in Figure 7 which consists in stacking braids on top of each other. In addi-
tion, he shows that the braid group acts faithfully on the fundamental group of the punctured disk
D\{p1,- -+ ,pn}. From this action stems a representation, known as the Artin representation. This
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Figure 6: Example of a 3-strand pure braid.

Figure 7: Composition of two braids.

representation has since been declined in various settings and is still being studied today. Finally, E.
Artin in [Art47] was the first author to mention the notion of link-homotopy in the context of braids.
He raises the question of whether the notions of isotopy and link-homotopy of braids are different.

In [Gol74] D. L. Goldsmith answers the question, giving an example of a non-trivial braid up to
isotopy that is trivial up to link-homotopy, see Figure 8. She also gives a presentation of the homotopy
braid group, i.e., the group of braids up to link-homotopy with braid composition, which appears as
a quotient of the classical braid group.

=l e e e

Figure 8: D. L. Goldsmith’s example of a braid that is trivial up to link-homotopy, but non-trivial
up to isotopy.

Motivated by the ‘torsion problem’ (see below), S. P. Humphries further pursued the study of
braids up to link-homotopy. He defined in [HumO01] a linear representation of the homotopy braid
group. However, this representation is not faithful. In contrast, we obtain the following.

Theorem A. There exists a faithful linear representation of the homotopy braid group for any number
of strands.

We give the detailed definition in Section 2.3; roughly speaking, this representation can be thought
of as the ‘linearization’ of the Artin representation.
Let us state now the torsion problem.

The torsion problem. Is there torsion in the homotopy braid group?
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This problem was first investigated by S. P. Humphries, who showed in [HumO01] that for less than
6 strands, the homotopy braid group is torsion-free. The torsion problem also appears in [BVW22],
where the authors mention the more general question of V. Lin, formulated in [Lin96] and taken up
in the Kourovka notebook [MK14]: ‘Is there a non-trivial epimorphism of the braid group onto a
non-abelian group without torsion?’. P. Linnell and T. Schick in [LT07] provide a complete solution
by showing that the braid group is residually torsion-free nilpotent-by-finite, hence in particular has
plenty of non-trivial torsion-free quotients. However, they only give an existence proof, and explicit
examples are not known for more than 6 strands. Our second main result on the homotopy braid
group solves the torsion problem:

Theorem B. The homotopy braid group is torsion-free for any number of strands.

We tackle this problem in two stages. We first prove a weak version, by showing that the homotopy
braid group is torsion-free for 10 strands or less, using purely classical techniques of braid theory. We
then extend this result, proving the statement for any numbers of strands, by using the broader context
of welded braids (see below). Interestingly, both proofs are based on similar techniques. However, if
we restrict ourselves to the case of classical braids, we obtain only a partial result (namely the above
weak version). Hence, Theorem B can be seen as one of the few known topological application of the
welded (and virtual) knot theory; see for instance [GPV00, ABMW17a, AM19, MY22].

Furthermore, as a corollary of Theorem B, we obtain that the braid group is torsion-free for
any number of strands (Corollary 4.3.10). This is a well-known fact due to Fadell and Neuwirth in
[FN62, Theorem 8]. Another classical proof of this result is based on a stronger property, shown
by P. Dehornoy in [Deh94], which states that braid groups are left-orderable. The property of left-
orderability for the homotopy braid group is not known to this day and constitutes an interesting
open question, as discussed in Remark 4.3.11.

Finally, the pure homotopy braid group has been studied by N. Habegger and X.-S. Lin in [HL90)]
as an intermediate object for the classification of links up to link-homotopy. They use the notion of
reduced free group, which is the quotient of the free group in which each generator commutes with
any of its conjugates, a notion due to Milnor [Mil54].

We next address the problem initially posed by J. W. Milnor in [Mil54], of classifying links in the
3-sphere up to link-homotopy. J. W. Milnor himself answered the question for the 2 and 3-component
cases. Furthermore, N. Habegger and X.-S. Lin [HL90] proposed a complete classification, using a
subtle algebraic equivalence relation on pure braids, where two equivalent braids correspond to link-
homotopic links. This classification result remains however somewhat non-effective, owing to this
intricate equivalence relation involved. A more direct algebraic approach had been proposed by J.
Levine [Lev88] just before the work of N. Habegger and X.-S. Lin in the 4-component case. Our main
result concerning links is a new geometric proof of J. Levine’s classification of 4-component links up
to link-homotopy. Concretely, this accounts to make completely explicit, in a geometric way, the
algebraic ingredients used in Habegger—Lin’s work, thus providing an effective classification result.
This also provides a geometric interpretation of Levine’s work. The result can be roughly formulated
as follows, see Theorem 3.2.3 for a precise statement.

Theorem C. There is a complete classification of links up to link-homotopy for less than 4 compo-
nents, by computable numerical invariant.

Our approach seems to apply, at least in principle, to links with a higher number of components;
we illustrate this with the case of algebraically-split 5-component links (that is, 5-component links
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with vanishing linking numbers). As a matter of fact, the general 5-component case has since been
treated independently using our approach by Y. Kotorii and A. Mizusawa in [KM22]. The central
tool for our geometric proof is the theory of claspers.

The notion of claspers was developed by K. Habiro in [HabOOb], and independently by M.
Goussarov in [Gou99, Gou0l] in the context of three-manifolds. These are thickened graphs in
three—manifolds with some additional structure, on which surgery operations can be performed. They
can be use effectively to study knotted objects and their invariants; see for example [Hab00b, Yas09,
MY12]. In [Hab0Ob], K. Habiro describes the clasper calculus up to isotopy, which is a set of geometric
operations on claspers that yield isotopic surgery results. In particular, he showed the close relation-
ship between claspers and the theory of finite type invariants (also known as Vassiliev invariant). It
is well known to experts how clasper calculus can be refined for the study of knotted objects up to
link-homotopy (see for example [FY09, Yas09]). This homotopy clasper calculus, which we review in
Section 1.1.2, is a central tool in our work on both links and braids.

Other important objects of this thesis are welded braids. Roughly speaking, welded braids are gen-
eralized braid diagrams, where virtual crossing are allowed in addition to the classical ones, regarded
up to certain local deformations generalizing the usual Reidemeister moves. An example of a welded
braid is given in Figure 9, where virtual crossings are represented by transverse double points. As

N\

Figure 9: Example of a 3-strand pure welded braid.

with classical braids, welded braids can be endowed with a group structure, resulting in the welded
braid group, which was first introduced by R. Fenn, R. Rim’anyi, and C. Rourke, in [FRR97]. This
group turns out to have several equivalent definitions, of rather different natures, and appears in
various contexts under different names. A. G. Savushkina defines it in terms of automorphism of
the free group in [Sav96]; the pure welded braid group appears as the so-called McCool group in this
setting [McC86]. Other authors define it in terms of motion group of circles: J. C. Baez, D. K. Wise,
and A. S. Crans [BWCO7] call it loop braid group, while in [BH13], T. E. Brendle and A. Hatcher call
it the group of untwisted rings. Finally, welded braids can also be seen as certain cylinders properly
embedded in the four-dimensional ball, see for instance [ABMW17a]. We will not discuss here these
different points of view, but we refer the reader to C. Damiani’s survey [Dam17] for more details. We
shall rather focus on the notion of link-homotopy for virtual and welded objects in this context.

H. A. Dye and L. H. Kauffman in [DK10] gave a first definition of link-homotopy for virtual objects
in terms of self-crossing change, which proves somewhat unsatisfactory (for example, virtual knots are
not always trivial up to self-crossing change). Subsequently, B. Audoux, P. Bellingeri, J.-B. Meilhan
and E. Wagner in [ABMW17a] and [ABMW17b] defined what appears to be the correct notion of link-
homotopy in the welded context in terms of self-virtualization. The authors, in light of N. Habegger
and X.-S. Lin [HL90], give a correspondence between pure welded braids up to link-homotopy and
conjugating automorphisms of the reduced free group. These results have been then extended by
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J. Darné in [Dar23], who gave a presentation of the pure welded braid group up to link-homotopy.
Based on this presentation and using the technology of arrow calculus, we obtain new presentations
of welded braid groups up to link-homotopy. Here, the notion of arrow calculus, developed by J.-B.
Meilhan and A. Yasuhara in [MY19], is the analogue of claspers calculus in the welded framework.
We also use it to extend our linear representation of Theorem A to the homotopy welded braid group.
Finally, we return to the torsion problem from the welded point of view. We show that the homotopy
braid group is torsion-free for any number of strands (Theorem B), thus giving an explicit solution
to V. Lin’s question.

The last objects discussed in this manuscript are homology cobordisms. These are 3-dimensional
manifolds that co-bound a surface and induce isomorphisms at the homology level. In the early 2000s,
M. Goussarov in [Gou99, Gou0l] and K. Habiro in [Hab00b] defined these objects independently,
along with the associated clasper calculus as an important class of objects in the theory of finite
type invariant of 3-manifolds. Subsequently, N. Habegger, J. Levine and S. Garoufalidis in [Hab00a,
Lev01, GLO5] studied homology cobordisms as an enlargement of the mapping class group. We refer
the reader to survey [HM12] for a precise description of these works.

The question of link-homotopy in this context is motivated by the so-called ‘Milnor-Johnson corre-
spondence’ which draws a strong analogy between braids, string-links, concordance, Milnor invariants
on one hand, and mapping class groups, homology cobordisms, homology cobordism classes, and John-
son homomorphisms on the other hand. We first observe that the natural algebraic approaches to this
question do not yield a satisfactory theory. Thus leads us to consider a graph-claspers-based defini-
tion instead. We explain, based on several counterexamples, how we are naturally led to a definition
which, although seemingly rigid, appears to be a promising candidate for a theory of link-homotopy
for homology cylinders.

This thesis consists of 5 chapters. Let us outline a bit more precisely the content of each.

Chapter 1 contains the topological and algebraic prerequisites that we will be using throughout
the thesis. In Section 1.1, we review the homotopy clasper calculus: after briefly recalling from
[Hab00b] K. Habiro’s clasper theory, we recall how a fundamental lemma from [FY09], combined
with K. Habiro’s work, produces a set of geometric operations on claspers having link-homotopic
surgery results. In Section 1.2 we introduce the reduced quotient of a group and study mainly that of
the free group. We prove, in Theorem 1.2.10, the existence and the unicity of a normal form for any
element of the reduced free group as a product of well-chosen commutators.

Chapter 2 is dedicated to the study of braids up to link-homotopy. We start by reinterpreting
braids in terms of claspers. In Section 2.1 we define comb-claspers, a family of claspers corresponding
to braid commutators. They are next used to define a normal form on braids up to link-homotopy,
thus allowing us to rewrite any braid as an ordered product of comb-claspers. In Section 2.2, we
give presentations of homotopy braid groups (Theorem 2.2.1 and Corollary 2.2.6), using the work
of [Gol74] and [MK99] as well as the technology of claspers. In Section 2.3, we define and study
the representation of the homotopy braid group of Theorem A. We give its explicit computation in
Theorem 2.3.5 (see also Example 2.3.7 for the 3-strand case) and show its injectivity in Theorem
2.3.11. Moreover, from the injectivity of the representation follows the uniqueness of the normal form
and thus the definition of the clasp-numbers, a collection of braid invariants up to link-homotopy.
In Section 2.4, we address the torsion problem in the homotopy braid group. Thanks to clasper
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calculus and a refinement, up to conjugation, of the normal form, we exhibit a potential torsion
candidate. We then show that its clasp-numbers must verify a certain equality for it to be a torsion
element (see Lemma 2.4.15). Then, in Theorem 2.4.19, we test the equality with the previously
defined representation, showing the absence of torsion for 10 strands or less. The proof is based on
a computer program (available on [Gra22]), so we can improve the result by optimizing the program
or using greater computing power; but this method will always yield a partial result. However, as
mentioned above, the ideas in this section combined with welded tools provide a complete answer to
the torsion problem.

Chapter 3 focuses on the study of links up to link-homotopy. The method used is based on the
precise description of some operations, which generate the algebraic equivalence relation mentioned
above in the classification result of N. Habegger and X.-S. Lin [HL90]; we provide them with a
topological description in terms of claspers. This new point of view allows us, for a small number of
components, to describe when two braids in normal form have link-homotopic closures. We translate
in terms of clasp-number variations the action of those operations on the normal form. In this way, we
recover the classification results of J. W. Milnor [Mil54] and J. Levine [Lev88] for 4 or less components
(Theorem C). Moreover, we also classify 5-component algebraically-split links up to link-homotopy
(Theorem 3.2.6).

Chapter 4 deals with the study of welded objects. General definitions are first given in Section
4.1, including a review of the arrow calculus developed in [MY19]. Then, in Section 4.2, building on
the work of Chapter 2, we show analogous results in the welded context. We give in Theorem 4.2.15
and Corollary 4.2.16 presentations of homotopy welded braid groups, using the work of [Dar23] and
[Dam17] as well as arrow calculus. We also show that the linear representation of Theorem A extends
to the group of homotopy welded braids. We give its explicit computation in Theorem 4.2.28 and
show its injectivity in Theorem 4.2.34. Finally, Section 4.3 returns to the torsion problem. We recast
the techniques of Section 2.4 in the larger welded setting using arrow calculus. This allows us to show
in Lemma 4.3.5 that the torsion problem is equivalent to whether a given welded braid is conjugate
to a classical braid up to link-homotopy. However, using algebraic techniques, we show that such
conjugate do not exist, which implies the absence of torsion in the homotopy braid group for any
number of strands, as stated in Theorem B.

The final exploratory chapter 5 deals with the study of homology cobordisms over a once-bordered
surface ¥. We aim to reinterpret the notion of link-homotopy for these objects. Our initial approach,
in Section 5.2, is algebraic in nature and aims to define an action of homology cobordisms on an
appropriate ‘reduced’ quotient of the fundamental group of . However, this action cannot be
defined using Milnor’s notion of reduced quotient (Counter-examples 5.2.1 and 5.2.2). In Section
5.2.2, we attempt to restrict the action to a larger quotient, namely the fully reduced quotient, but
this quotient turns out to be too coarse, as illustrated by Theorem 5.2.8. Next, we explore a new
approach to defining link-homotopy in terms of graph-claspers in Section 5.3. We explain how this
boils down to defining a notion of repetition on leaves (analogous to Lemma 1.1.10). In Section
5.3.2.1, an initial naive definition of repetition is proposed, but it proves unsatisfactory, as illustrated
by Example 5.3.11. Finally, in Section 5.3.2.2, a less intuitive definition is suggested. Although we
do not delve deeper into the study of this notion within this manuscript, we consider it as a potential
avenue for future research.

It should be noted that the results of the first three chapters are essentially contained in the
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publication [Gra23]. These three chapters however contain more material than [Gra23], including in
particular our first (partial) solution to the torsion problem.
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Chapter 1

Requirements

In this chapter, we give the basic topological and algebraic tools that will be used throughout the
document. In Section 1.1, we define tangles. They encompass the objects that we will study in the
following sections: braids, string-links, knots and links. We also define claspers, powerful topological
tools which are particularly well-suited for the study of link-homotopy. Then, in Section 1.2, we turn
our attention to the reduced quotient of a group. More specifically, we study the reduced free group,
for which we propose a normal form as a product of well-chosen commutators.

1.1 Tangles and claspers

Clasper calculus has been developed by K. Habiro in [Hab0Ob] in the context of tangles up to isotopy
(Definition 1.1.1). Claspers turn out to be in fact a powerful tool to deal with link-homotopy (Defi-
nition 1.1.2). In Section 1.1.1 we define the main objects and their associated vocabulary. Then we
describe in Section 1.1.2 how to handle claspers up to link-homotopy.

1.1.1 General definitions

For simplicity, we decide to define and study tangles in the 3-dimensional ball. However, the results
presented in this section are naturally adaptable to the study of tangles in any 3-dimensional manifold.

Definition 1.1.1. An n-component tangle is a smooth embedding of an n-component, ordered, and
oriented 1-manifold (a disjoint union of circles and intervals) in the 3-dimensional ball. We also
required the embedding to be proper, which mean that the boundary of the 1-manifold must be sent
to the boundary of the 3-ball. We often identify the tangle with its oriented image (the orientation is
induced by the embedding). Each of the embedded component is called a component of the tangle.
Two tangles are isotopic if they are related by an ambient isotopy of the ball, fizing its boundary.

Definition 1.1.2. Two tangles are link-homotopic if there is a homotopy between them fixing the
boundary, and such that distinct components remain disjoint during the deformation.

Remark 1.1.3. Tangles are faithfully represented by a generic planar projection; generically, the
intersection points will not be more than double. By specifying at each crossing which strand passes
over the other, and specifying the orientation of the components, we get a tangle diagram.
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Theorem 1.1.4. [AB26, Rei26] Two tangles are isotopic, if and only if, their diagrams are related
by a sequence of Reidemeister moves (see Figure 1.1) and planar isotopies.

o, XX =

T

~
— N,

Figure 1.1: The Reidemeister moves.

In the following theorem, we recall an alternative characterization from [Mil54] of the link-
homotopy in terms of diagrams.

Theorem 1.1.5. Two tangles are link-homotopic, if and only if, their diagrams are related by a
sequence of Reidemeister moves (see Figure 1.1), planar isotopies and self-crossing changes, i.e.,
crossing changes of arcs from the same component (see Figure 1.2).

Same . v K ~ X
component —,

Figure 1.2: A self-crossing change.

Definition 1.1.6. A disk T' smoothly embedded in the interior of the 3-ball is called a clasper for a
tangle 0 if it satisfies the following three conditions:

- T 1is the embedding of a connected thickened uni-trivalent tree with a cyclic order at each trivalent
vertex. Thickened univalent vertices are called leaves, and thickened trivalent vertices, nodes.

- 0 intersects T transversely, and the intersection points are in the interior of the leaves of T.

- Fach leaf intersects 6 in at least one point.

It should be noted that our definition differs from that of [Hab00b]; claspers as defined here are
referred to in K. Habiro’s terminology as strict tree-claspers.

Diagrammatically, a clasper is represented by a uni-trivalent graph corresponding to the one to
be thickened. The trivalent vertices are thickened according to Figure 1.3. On the univalent vertices

we specify how the corresponding leaves intersect €, and we also indicate how the edges are twisted
using markers called half-twists (see Figure 1.3).

Definition 1.1.7. Let T be a clasper for a tangle 6. We define the degree of T', denoted by deg(T),
as its number of nodes plus one, or equivalently, its number of leaves minus one. The support of T,
denoted by supp(T'), is defined to be the set of components of 0 that intersect T'.

14



Y - I I - I I_ IR
Figure 1.3: Local diagrammatic representation of claspers.

Definition 1.1.8. A clasper T for a tangle 6 is said to be simple if every leaf of T intersects 0
exactly once. A leaf of a simple clasper intersecting the I-th component is called an I-leaf.

Definition 1.1.9. We say that a simple clasper T for a tangle 6 has repeats if it intersects a
component of 0 in at least two points.

Given a disjoint union of claspers F' for a tangle 6, there is a procedure called surgery detailed in
[Hab00b] to construct a new tangle, denoted 6. We illustrate on the left-hand side of Figure 1.4 the
effect of a surgery on a clasper of degree one. Now if F' contains some claspers with degree higher or
equal than one, we first apply the rule shown on the right-hand side of Figure 1.4, at each trivalent
vertex: this breaks up F' into a disjoint union of degree one claspers, on which we can perform surgery.

o -8l -

Figure 1.4: Rules of clasper surgery.

Note that clasper surgery commutes with ambient isotopy. More precisely, for i an ambient
isotopy and F' a disjoint union of claspers for a tangle § we have that i(#") = (i(9))"*). This is an
elementary example of clasper calculus, which refers to the set of operations on unions of tangles with
some claspers, that allow to deform one into another with isotopic surgery result. These operations
are developed in [Hab0Ob], and we give in the next section the analogous calculus up to link-homotopy.

1.1.2 Clasper calculus up to link-homotopy

In the whole section, T" and S denote simple claspers for a given tangle 8. We use the notation T' ~ S,
and say that T and S are link-homotopic when the surgery results 7 and #° are so. For example, if
i is an ambient isotopy that fixes 6, then T' ~ i(T). Moreover, if §7 is link-homotopic to 6, we say
that T" vanishes up to link-homotopy and we denote T' ~ (.

We begin by recalling a fundamental lemma from [FY09]; more precisely, the next result is the
case k =1 of [FY09, Lemma 1.2], where self C}-equivalence corresponds to link-homotopy.

Lemma 1.1.10. [FY09, Lemma 1.2] If T has repeats, then T vanishes up to link-homotopy.

It is well known to the experts that combining Lemma 1.1.10 with the proofs of K. Habiro’s
technical results on clasper calculus [Hab00b], yields the following link-homotopy clasper calculus.!

!Those moves are contained in [Yas09] and [MY12] together with [FY09)].
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Proposition 1.1.11. [Hab00b, Proposition 3.23, 4.4, 4.5 and 4.6/ We have the following link-
homotopy equivalences (illustrated in Figure 1.5).

(1) If S is a parallel copy of T which differs from T only by one half-twist (positive or negative),
then SuT ~ .

(2) If T and S have two adjacent leaves and if T" v S’ is obtained from T U S by exchanging these
leaves as depicted in (2) from Figure 1.5, then T U S ~T' U S" U T, where T is as shown in the

figure.

(8) If T' is obtained from T by a crossing change with a strand of the tangle 6 as depicted in (3)
from Figure 1.5, then T ~T" 0T, where T is as shown in the figure.

(4) If T' v S' is obtained from T U S by a crossing change between one edge of T' and one of S as
depicted in (4) from Figure 1.5, then T U S ~T' 0 S" U T, where T is as shown in the figure.

(5) If T" is obtained from T by a crossing change between two edges of T then T ~ T'.

) 0] ¢
Uy 0
T| |s . | / o g A
(1) 2

N/ N NS
KR Xap

Figure 1.5: Basic clasper moves up to link-homotopy.

Idea of proof. The result of [Hab0Ob] used here are up to Ck-equivalence, that is, up to claspers of
degree up to k. The key observation is that, by construction, all such higher degree claspers have
same support as the initial ones, hence they are claspers with repeats. Lemma 1.1.10 then allows us
to delete them up to link-homotopy. O

Remark 1.1.12. Lemma 1.1.10 combined with Proposition 1.1.11 gives us some further results:

- First, statement (4) implies that if |[supp(T) nsupp(S)| = 1 then we can realize crossing changes
between the edges of T and S.

- Moreover, if |[supp(T') n supp(S)| = 2 thanks to statement (2) we can also exchange the leaves
of T and S.

- Furthermore, statement (3) allows crossing changes between T and a component of 0 in the
support of T

16



Indeed, in each case the clasper T involved in the corresponding statement has repeats and can thus
be deleted up to link-homotopy.

The next remark describes how to handle half-twists up to link-homotopy.
Remark 1.1.13. We have the following link-homotopy equivalences (illustrated in Figure 1.6).
(6) If T' is obtained from T by turning a positive half-twist into a negative one, then T ~ T".
(7) If T' is obtained from T by moving a half-twist across a node then T ~ T".

(8) If T and T' are identical outside a neighborhood of a node, and if in this neighborhood T and
T are as depicted in (8) from Figure 1.6, then T ~ T".

T T —
~ T ~U T T ~U T
(6) (7) (8)

Figure 1.6: How to deal with half-twist up to link-homotopy.

Remark 1.1.14. Remark 1.1.13 allows us to bring all the half-twists on a same edge and then cancel
them pairwise. Therefore, we can consider only claspers with one or no half-twist.

Proposition 1.1.11 together with Remark 1.1.13 give us most of the necessary tools to understand
clasper calculus up to link-homotopy. The missing ingredient is the relation IHX which we give in
the following proposition.

Proposition 1.1.15. [CST07] Let Ty, Ty, Tx be three parallel copies of a given simple clasper that
coincide everywhere outside a 3-ball, where they are as shown in Figure 1.7. Then Ty uTy uTx ~ .
We say that Ty, Ty and Tx verify the IHX relation.

7

Tr Tx Tx

Figure 1.7: The THX relation for claspers.

1.2 Reduced groups and commutators

In this document, the groups will be denoted multiplicatively, and [a,b] := aba~'b~! will denote the
commutator of two elements a,b.

Definition 1.2.1. Let G be a group generated by {z1, ..., xn}. We define Jo < G to be the normal
subgroup generated by elements of the form [z;, \x; A7), for allie {1, ..., n}, and for all \ € G. We
call reduced quotient, the quotient G/Jg and we denote it by RG.
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Remark 1.2.2. This definition depends on the choice of the generators {x1, ..., zn}. We will develop
this point further in Chapter 5, when we discuss the notion of fully reduced groups.

In what follows, we work essentially with the free group F;,, on n generators xi, ..., z,. The
reduced quotient RF,, = F,/J of the free group is called reduced free group, where J := Jp,.

Definition 1.2.3. Let G be a group and z1,--- ,x, elements in G. A commutator in x1,--- ,x, of
weight k& (k > 0) can be defined recursively, as follows:

e The commutators of weight one are x1, ..., Tp.

e The commutators of weight k are words [C1,Co| where C1, Cy are commutators verifying k =
wg(Ch) + wg(Cs) where wg(C') denotes the weight of C.

Definition 1.2.4. We denote Occ;(C) = r and we say that z; occurs r times in a commutator C if
one of the following holds:

o IfC=uxj, thenr=11ifi=jandr =0 ifi#j.
o IfC =[C1,Cy], then r = Occ;(Ch) + Occ;i(Ca).

We say that a commutator C' has repeats if Occ;(C) > 1 for some i. We call support of the
commutator C, the set of elements x; (or by abuse just the set of indices i) such that Occ;(C) > 0
and we denote it supp(C).

The following is a reformulation of Definition 1.2.1 that is used throughout the document.

Proposition 1.2.5. [Lev88, Proposition 3] The subgroup J is generated by commutators in xy, ..., Ty
with repeats. Hence, these commutators are trivial in the reduced free group. The reduced quotient of
a group G generated by x1, ..., T, s given by adding to G, the relations C =1 for any commutator
C with repeats in x1, ..., Tp.

Corollary 1.2.6. The subgroup J is generated by commutators in x1, ..., T, with repeats, subject to
the condition wg(C) < 2n. FEquivalently, the reduced quotient of a group G generated by x1,...,x,
admits a finite set of relations given by C = 1 for any commutator C with repeats in x1,...,Tn,

satisfying the condition wg(C) < 2n. -

Proof. Let us first observe that for any commutator C' = [C1,C5] satisfying wg(C') > 2n, there exists
(at least one) i € 1,2 such that wg(C;) > n and wg(C;) < wg(C). Also, note that any commutator
C = [C1,C3] belongs to the normal subgroups generated by C; and Cs. Thus, by iterating these two
results, we demonstrate that any commutator of weight strictly greater than 2n, and therefore with
repetitions, is generated by a commutator C' satisfying n < wg(C') < 2n, and thus also has repetitions.
This shows, in particular, that any commutator with repetitions is generated by commutators with
repetitions of weight less than or equal to 2n and completes the proof. O

The notion of basic commutators was first introduced in [Hal33] and was further studied in [LSO01,
Hal59, MKS04] to describe the lower central series of the free group. It was then naturally adapted in
[Lev88] to the framework of the reduced free group. In the next definition, we describe a well-chosen
family of commutators. This family will replace the reduced basic commutators from [Lev88] and will
follow us throughout the whole document.
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Definition 1.2.7. Let us define the following family of commutators without repeats in REF,:

F = {[il, ce il] ‘ 1 < i, 2<k<l}l<n‘
Here, we use the notation [7;177;27 T Z‘l] = [[ o [[xi17mi2]7xi3]7 T 7xil_1]7xil]' This is a ﬁnite set and
we can thus choose an arbitrary order on it, F = {[a1], [a2], ..., [am]}. We say that an element

w € RF, is in normal form with respect to the order if

w =[] [aa]® - - [am]™

for some integers {e1, €2, ..., em}.
Definition 1.2.8. We can define the order given for two commutators [a] = [i1---4;] and [o/] =
[i1 -+ 3y ] by [a] < [a] if:

e wg(a) < wg(d), or

o wg(a) =wg(d) and i1 ...4 <jex ) ...1].
Example 1.2.9. With respect to this order, the normal form of an element w € RF3 = {x1, =2, T3)
is given by 8 integers {e1, ..., eg} as follows:

w = [1][2)°2[8][12]°*[13]° [28] 0 [123]7[132]°

The following theorem is a kind of reduced analogue of Hall’s basis theorem [Hal59, Theorem
11.2.4]. It is to be compared with [Lev88, Proposition 6], where a different family of commutators is
used, see Remark 1.2.12.

Theorem 1.2.10. For any word w € REF,, there exists a unique ordered set of integers {e1, ..., em}
associated to the ordered family of commutators F = {[a1], [a2], ..., [am]} such that

w =[] [az]? -+ - o]

Proof. Let us first express any commutator C as a product of commutators in F with the same weight
as C. To do so, we use the following three relations in RF,.

() [X, Y] = [V, X] =[X"1Y] = [X,Y!] with X,Y commutators.
(i) [X,[V,Z]] = [[X,Y],Z] - [[X,Z],Y]"! with X,Y,Z commutators.
(i) [UV,X] = [U,X][V,X] with U,V commutators such that supp(U) n supp(V) # &.

Relation (i) allows us to move the generator z;, with ¢; = min(supp(C)) at the desired position; we
obtain C' = [---[x;,,C1],- -+ ,Ck]*!. Relations (i), (i) and (iii) are used to decrease the weight of the
commutator C; in this expression. We start with C; = [C],C4] supposing its weight is bigger than
one, and we get:
’ [xllv[ChCQ]]? 7Ck]i1
o [[xlucl] 02] [[l’il,Cé],Ci]_l, T ka]il

’ [[1"11701] ]) 7Ck]i1[' o [[SL’il,Cé],Ci]_l, e 7Ck]i1

[[xll 70{] ]7 7Ck]i1[' o [[mll 705]701]7 T 7Ck]$1'
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Since wg(C1) < wg(C) and wg(C%) < wg(C) we know that by iterating this operation on the new
terms we can rewrite C' as a product of commutators of the form [- - [z;,,2i,],C2], - - - ,Ck], having in
particular the same weight as C'. We finish by repeating the process on Cs, ..., Cg.

For any w € RF,, we can now demonstrate the existence of a decomposition w = [], cz[a]®.
We begin by expressing w as a product of weight 1 commutators belonging to F. This is possible
because weight 1 commutators in F are precisely the generators x1, ..., x, of RF;,,. Next, we rearrange
these weight-one commutators according to the order given by the family F. This is achieved up to
commutators of weight strictly higher than one, as two commutators commute up to commutators
of strictly higher weight. Using the argument given at the beginning of this proof, we may safely
assume that these higher weigh commutators belong to F. We then consider, among these new
commutators, those of weight two and rearrange them according to the order in F. Again, this
introduces higher weight factors, which can also be assumed to be elements of F. By iterating
this procedure, we eventually obtain the desired decomposition. Indeed, the procedure terminates
because any commutator of weight strictly bigger than n has repeats and is then trivial according to
Proposition 1.2.5.

To prove the unicity of the decomposition, we work with the unit group U, of the ring of power
series in non-commuting variables X1, ..., X,,. More precisely, we consider its quotient U, in which
the monomials X = X, X,, - - - X4, vanish when they have repetition (i.e., o = «; for some i # j).
The elements that we will consider in U,, are of the form 1+ Q with Q a sum of monomials of positive
degree, and their inverses are given by (1+ Q)™' =1+ Q with Q = —Q + Q> — Q> + --- (—1)"Q™.
Now we can define the reduced Magnus expansion M. This is a homomorphism from the reduced free
group RE), to Uy, defined by M(x;) = 1+ X;. The following computation shows that M respects the
relations of the reduced free group, meaning that M ([z;,Az;A~']) = 1 for any generator z; and any X
in F:

MMz A~ M (2;) = (]\Z()\)(l )
=1+X; +M(>\)XM(
= (14 X) (M) (1 + X
= M (z) MMz A 7).

An easy induction on the weight [ of the commutator [«] € F defined in Definition 1.2.7 gives the
following:

Claim 1.2.11. For every [a] = [a1,--- ,a;] € F, M([@]) = 1 + X* + Qi(Xay, - , Xo,) where Qq is
a sum of monomials of degree | = wg([a]) not starting with X,,, and where each variable X,, for
i€{l, ..., l} appears exactly once.

Now, we take w = [ [ cr[]° = [ cr[a]% two decompositions of an element w € RF,,. We prove
by induction on the weight of [«] that e, = €/, for any commutator [«a] € F. Suppose that e, = €/,
for any [a] of weight < k and compare the coefficients of the monomial X in both M([],. rlal®)
and M (][, x[a]%) for a fixed commutator [a] of degree k. According to Claim 1.2.11, commutators
of weight > k do not contribute to this coefficient and the only contributing weight k£ commutator
is [a] itself with coefficient e, (resp. el,). Commutators of weight < k may also contribute to this
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coefficient, but the induction hypothesis ensures that the contribution is the same in both expressions.
This proves that e, = €, for any [«] of weight k£ and concludes the proof. O

Remark 1.2.12. Unlike Levine’s proof of [Lev88, Proposition 6], this proof does not require M. Hall’s
basis theorem [Hal59, Theorem 11.2.4].

Definition 1.2.13. To the ordered set of commutators F = {[aa], ..., [am]} in RE, we associate a
Z-module V formally generated by {au, ..., au,}. We also define the linearization map ¢ : RF, —V
by:

d(w) =e1aq + -+ + ey, where [a1]® - [aum]™ is the normal form of w.

We keep calling ‘commutators’ the generators of V and we define the support and the weight of o to
be those of [a].

We stress that the normal form and the linearization map ¢ both depend on the ordering on F.
Lemma 1.2.14. The Z-module V is of rank,
k!
rk(V) = )] T
o<i<k<n

Moreover we can decompose V into a direct sum of submodules V; generated by the commutators of
weight ©. Then we obtain that:

rk(V;) = <7Z> (i — 1),

Proof. The first equality comes by counting the cardinality of F. To do so, we first count the elements

[a] with first term a3 = k. To choose aw, as, ..., a; with 0 <1 < n — k we only have to respect the
condition that a1 < «;. Thus they can be freely chosen in {k + 1, ..., n} and therefore:
n n—k+1 n—1 k n—1 k
(n—k)! k! k!
rk(V) = = = —.
I I T RPN ey P IPIY;

For the second equality, we follow the same kind of reasoning, but this time a; = k& must be chosen

in {1, ..., n— i+ 1}, then we choose the i — 1 last numbers a3, ..., a; without restriction in
{k+1, ..., n}. We obtain:
n—i+1 n—1 n—1
(n—k)! k! k ,
k(V;) = = —_— = - 1!
rk(V) kZ_:l (n—k—i+1) k;_l(k—m—l)! k_Zi_l i—1) )L
and we conclude using the so-called Hockey-stick identity. O
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Chapter 2

Braids up to link-homotopy

This chapter is dedicated to the study of braids up to link-homotopy. In the next section, we intro-
duce the notion of comb-claspers for braids, that yields a normal form result up to link-homotopy.
Then, in Section 2.2, we give a new presentation of the homotopy braid group inspired from that of
Goldsmith [Gol74] with a more symmetric structure. Section 2.3 deals with a linear representation
of the homotopy braid group, defined and studied using clasper calculus. Finally, in Section 2.4, we
begin to tackle the torsion problem, to which we provide a partial answer, to be completed later in
chapter 4.

2.1 Braids and comb-claspers

Let D be the unit disk with n fixed points {p;}i<, on a diameter 0, and let I be the unit interval

[0, 1]. Set also Iy, ..., I, n copies of I, and | | I; their disjoint union.
i<n
Definition 2.1.1. An n-component braid 8 = (51, ..., B,) is a smooth proper embedding
(,81, ey ﬂn) . |_|IZ‘—>D x I
i<n
such that, for some permutation of {1, ..., n} associated to B, denoted 7w(3), we have $;(0) = (p;, 0)

and Bi(1) = (Pr(g)@i), 1) for any i. We also require the embedding to be monotonic, which means that
Bi(t) € D x {t} for any t € [0, 1]. We call (the image of) f5; the i-th component of 8. We say that a
braid B is pure if its associated permutation w([3) is the identity.

We emphasize that braids are oriented from top to bottom; in particular, the interval I is
parametrized in an unconventional manner, runing from ‘0’ at the top to ‘1’ at the bottom.

The composition of braids consists in stacking the braids one below the other: it is defined as
follows. Let 8 and 8’ be two braids. Then their composition 33’ is a braid defined by

o ho(Bi(21)), for t € [0,3],
P = { B (B (206 — 1)), for te [1,1],

with ¢ € [[1,n]], and where the maps ho and hy : D x I — D x I are defined for z € D and t € I by
t

,).

1 t
ho(x,t) = (l'?* + 7)7 and hl(x’t) = (x’2

2 2
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See Figure 2.1 for illustration.
\ N
) . /\ ) ( )
Figure 2.1: Example of composition of two braids.

Definition 2.1.2. The set of braids up to ambient isotopy fixing the boundary, equipped with the
stacking operation, forms a group. It is called the braid group and it is denoted by B,,. The set of
pure braids up to isotopy forms a subgroup of B, denoted by P, and called the pure braid group.

Definition 2.1.3. The set of braids up to link-homotopy equipped with the stacking operation forms
a group. It is called the homotopy braid group and it is denoted by hB,,. Elements of hB,, are
called homotopy braids. The set of pure braids up to link-homotopy forms a subgroup of hB,, denoted
by hP,, and called the pure homotopy braid group.

Remark 2.1.4. In [Art}7], Artin raises the question of whether the notions of isotopy and link-
homotopy of braids are different or identical. Goldsmith, in [Gol74], shows that the two notions are
in fact different. As an illustration, we present Goldsmith’s example of a braid in Figure 2.2, which
1s trivial up to link-homotopy but non-trivial up to isotopy.

_ ~_

~—| ~—| ~l__
=2 =22
| \D |/l

AN
—
v /V l v v A v

Figure 2.2: Example of a trivial braid up to link-homotopy, but non-trivial up to isotopy.
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Remark 2.1.5. Braids are tangles without closed components, and with boundary and monotonic
conditions. But any (pure) tangle without closed components is link-homotopic to a (pure) braid (in
the pure case, such tangles are called string-links in the literature). Thus, when regarding braids up
to link-homotopy we can freely consider them as tangles, i.e., we can forget the monotonic condition.

This is useful from the clasper point of view since clasper surgery does mot respect this condition in
general.

We introduce next comb-claspers and their associated notation. Consider the usual representative
1 of the trivial n-component braid given by 1; = {p;} x [ for i € {1, ..., n}. Denote by (D x I)* and
(D x I)~ the two half-cylinders determined by the plane ¢ x I, where § is the fixed diameter on D.
In figures, we choose (D x I)"™ to be above the plane of the projection.
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Definition 2.1.6. We call comb-clasper a simple clasper without repeats for the trivial braid such
that:

- Every edge is in (D x I)*.

- The minimal path running from the smallest to the largest component of the support meets all
nodes.

- At each node, the edge that does not belong to the minimal path leaves ‘to the left’ as locally
depicted in Figure 2.3.

! Minimal

‘/5 path

* FEdge to
the left

Figure 2.3: Local orientation at each node of a comb-clasper.

An example is given in Figure 2.4.

The second condition of Definition 2.1.6 implies that every node is connected (by an edge and a
leaf) to a component of 1 that is not the smallest or the largest of the support. Using this fact, we
can order the support of a comb-clasper: we start with the smallest component, then we order the
components according to the order in which we meet them along the minimal path, and finally, we
end with the largest one. For example, in Figure 2.4 the ordered support is {1, 2, 6, 4, 5, 8}.

Once the ordered support {i1, i9, ..., ¢} is fixed, the only remaining indeterminacy in a comb-
clasper is the embedding of the edges in (D x I)*. This depends on the relative position of the
edges, and on the number of half-twists on each of them. However, up to link-homotopy the relative
position of the edges is irrelevant (by move (5) from Proposition 1.1.11). Besides, by Remark 1.1.14,
we can always suppose that a comb-clasper contains either one or no half-twist; moreover by Remark
1.1.13 we can freely assume that the potential half-twist is located on the edge connected to the 4;-th
component. We can thus unambiguously (up to link-homotopy) denote by (i1,io,- - ,i;) the comb-
clasper with such a half-twist and by (iy,is, - - - ,i;) "' the same clasper without any half-twist; we call
them respectively twisted and untwisted comb-claspers. For example, the twisted comb-clasper
(126458) is illustrated in Figure 2.4.

In what follows we blur the distinction between comb-claspers and the result of their surgery up
to link-homotopy. From this point of view, a comb-clasper is a pure homotopy braid and the product
(@)(a’) of two comb-claspers is the product 1(®1(®), In particular, according to move (1) from
Proposition 1.1.11, the inverse of a comb-clasper () is given by (a)~!.

Lemma 2.1.7. Let T be a simple clasper of degree k for the trivial braid 1, then 17 is link-homotopic
to a product of comb-claspers with degree greater than or equal to k.
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Figure 2.4: The twisted comb-clasper (126458).

A.

Proof. First, we use isotopies and move (3) from Proposition 1.1.11 to turn 7" into a product of
clasper with edges in (D x I)*. This step may create claspers of higher degree (corresponding to
clasper T in move (2)): in that case we also apply isotopies and move () on them until we get the
desired product. Note that the procedure must stop. Indeed, move (3) always creates claspers of
strictly higher degree, and when the degree is higher than the number of strands, the claspers have
repetitions and are therefore trivial up to link-homotopy (Lemma 1.1.10). Then, by the IHX relation
of Proposition 1.1.15, we can further assume that for each clasper, the minimal path running from
the smallest to the largest component meets all its nodes. Finally, we apply move (8) from Remark
1.1.13 to satisfy the third condition of Definition 2.1.6 and obtain a product of comb-claspers. O

Definition 2.1.8. We say that a pure homotopy braid 5 € hP, given by a product of comb-claspers
B = (al)il(ag)il L. (am)il is :

o stacked if (o) = (aj) for some i < j implies that (o) = (o) for any i < k < j,

e reduced if it contains no redundant pair, i.e., two consecutive factors are not the inverse of each
other.

If B is reduced and stacked, we can then rewrite B = [ [(a;)" for some integers v; and with (o;) # (o)
for any © # j. Moreover, given an order on the set of twisted comb-claspers, we say that a reduced
and stacked writing is a normal form of § for this order if (o) < () for all i < j.

We stress that the notion of normal form is relative to a given order on the set of twisted comb-
claspers. The following definition will be relevant for Chapter 3.

Definition 2.1.9. Given two twisted comb-claspers (o) = (i1---4;) and (/) = (i} ---1},) we can

choose the order (o)) < () defined by:

e max(supp(a)) < max(supp()), or

e max(supp(«)) = max(supp(c’)) and deg(a) < deg(a’), or

e max(supp(a)) = max(supp()) and deg(a) = deg(a’) and iy .. .4 <iex 7] - .- 1],
where <jox denotes the lexicographic order.

Example 2.1.10. With respect to this order, the normal form of an element B € hPy is given by 12
integers {112, ..., V1324} as follows:

B = (12)"12(13)"13 (23)V13 (123)7128 (14)V14 (24)"24 (34) 3¢ (124) 124 (134) 134 (234) 234 (1234) 1254 (1324) 1324

25



Theorem 2.1.11. Any pure homotopy braid 8 € hP, can be expressed in a normal form, for any
order on the set of twisted comb-claspers.

Proof. Note that the comb-clasper (ij) corresponds to the usual pure braid group generator A;; € hP,
(see Figure 2.6). Thus it is clear that 8 = [[(a)*! for some degree one comb-claspers (a)*!.

Now we rearrange these degree one factors according to the chosen order by moves (2) and (4)
from Proposition 1.1.11. This introduces new claspers of degree strictly higher than one, and by
Lemma 2.1.7 we can freely assume that these are all comb-claspers. Next we consider, among these
new comb-claspers, those of degree two and we rearrange them according to the order. Again this
introduces higher degree factors, which can all be assumed to be comb-clasper according to Lemma
2.1.7. By iterating this procedure degree by degree, we eventually obtain the desired normal form.
Indeed, the procedure terminates because claspers of degree higher or equal than n are trivial in AP,
by Lemma 1.1.10. O

Remark 2.1.12. This result is to be compared with Theorem 4.3 of [Yas09], which uses a different
notion of comb-clasper, ordered according to the clasper degree.

2.2 Braid group presentations

In this section, we use the usual Artin braid generators o; for i € {1, ..., n — 1} illustrated in Figure

2.5 and the usual pure braid generators A;; = 0j_10j_2--- O’i+10'2-20'1+1 . -Uj:lQaj_fl for1 <i<j<n,

illustrated in Figure 2.6.

1 7 i+1 n 1 ) J n
\ | 1
Ry eee [} I oo
N\ =
Figure 2.5: The Artin generator o;. Figure 2.6: The pure braid generator A;;.

We first recall the usual presentations of the braid group from [Art47] and the pure braid group
from [Bir74].

Theorem 2.2.1. A presentation' for the braid group is given by:

oi0jo; = o005 if i —j| <1
A presentation for the pure braid group is given by:

[Arstij]:]- forr<s<i<jorr<i<j<s
Po=A.. [Ars,Arj] = [As_jl7ATj forr<s<yjy
Y [Ans Ayl = [AG A forr<s<j

[Ari,Asj] = [[A--I,Afl],Asj] forr<s<i<j

(] rj
'For the sake of compactness, here and in all presentations of the chapter, generators are indexed as above. That is,
generators o; are indexed by integers i € {1, ..., n — 1}, and generators A;; by pairs of integers 1 <i < j <n — 1}.
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The following theorem is based on the result of [Gol74].

Proposition 2.2.2. Let J <1 B,, denote the normal subgroup generated by all elements of the form
[Aij,)\Aij)\*l] where \ belongs to P,. We obtain the homotopy braid group hB,, as the quotient:

hBy,, = B,/ J.
This induces the following presentation® for hBy:
0;0;0; = 0;040; if’i—j|<1
th: g; [O'Z',O'j]=1 Zf|l—j|>1

[Aij M A =1 fori<jand A€ hP,

Proof. In [Gol74], the homotopy braid group hB, appears as the quotient B,/J’, where J < B,
is the normal subgroup generated by elements of the form [Aij,)\Aij)\_l] where A\ belongs to the
normal subgroup generated by {A;j, ..., Aj—1;}. Our result relies on the observation that J = J'.
Obviously J' < J thus we only need to show that J < J’. This is equivalent to showing that for
any A € P, the pure braid A;; and )\Aij)\_l commute up to link-homotopy. Let us remind that A;;
is the surgery result 1) of the comb-clasper (ij). Take A a given representative of A\, and consider
an ambient isotopy ¢ sending A1A~! to the trivial braid 1. Now, consider the comb-clasper (ij) as a
clasper for the braid A1A~! and denote it by A(ij)A~!. Apply ¢ to the braid A1A~! together with the
clasper A(ij)A~!. This isotopy sends A(ij)A~! to a clasper for the trivial braid, denoted C, whose
surgery result is the conjugate /\Aij)\*l. Since ambient isotopies preserve the support, it is clear that
supp(C) = supp(A(ij)A~!) = {i,j}. Hence, according to Remark 1.1.12, we have (ij)C ~ C(ij), and
the result is proved. ]

Remark 2.2.3. The presentation provided in Proposition 2.2.2 is not a finite presentation due to
the infinite set of reduced-type relations [Aij,)\Aij)\_l] = 1. Howewver, by using the characterization
in terms of repeated commutators, as seen in Proposition 1.2.5, we can use Corollary 1.2.6 how to
reduce it to a finite set of relations.

Remark 2.2.4. This proposition can also be demonstrated purely algebraically. It was the subject of
the master’s thesis of 1. Mazzotti, which I co-supervised in Caen. The proof is much more technical
and it is based on commutator calculus [MK99] and braid group presentation results [Gol74, Min15].

In order to obtain a similar result for the pure homotopy braid group we need the following.

Lemma 2.2.5. The subgroup J< B, normally generated in B, by elements of the form [A;j, AAijA~1]
for A e P, seen as a subgroup of P,, coincides with the normal subgroup of P, generated by elements

of the form [A;;,\Aij\"1] for X € P,.

Proof. For ke{l, ...,n—1},1<i<j<nand X € P, we compute:
[Ais15M A1 ifi=kandj#k+1
[Ai1j, 0241105 ] if j =k
ok[Aij AN A oyt = Akk+1[Ai—lja)\SAi—lj)\gl]A,;,3+1 ifi=rk+1
Aprr1[A 1A N A, ifi#kandj=k+1
[Az‘j,)\5Az‘j)\5_1] otherwise,

2By the notation A € P, here we mean that X is a pure homotopy braid, i.e., a word in the pure homotopy braid

— . . ... . 2 _1 .. _1 1 1 1
generators {A;; = 0j_10j—2 " 04107 il (J'j720']71} and their inverses.
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with \; € P, fori € {1, 2, 3, 4, 5}. Therefore, the conjugates oy, [Az-j,)\Aijz\*l]ak_l are always conjugates
of [Ayj, N Ayj(N)™1] in P, for some 1 < ¢’ < j' < n and some X € P,, and the proof is complete. [

Corollary 2.2.6. Let J<1 P, be the normal subgroup generated by elements of the form [Aij,)\Aij)\_l]
for any A\ € P,. We obtain the pure homotopy braid group hP, as the reduced quotient relative to the
generative system {A;; | i < j} of the pure braid group:

hP, = P,/J = RP,.

This induces the following presentation for hP,:

[Ars,Aij] =1 forr<s<i<jorr<i<j<s
WP —| A [Ar57Arj] = [Arj,Asj] = [Asj;Ars] for r<s <j
" * [AM',AS]'] = [[AZ",AT]‘],ASJ‘] fOT’ r<s<i< ]
[Aij,)\Ai] _1] =1 fori<j and A€ hP,

Proof. The first half of the statement is a direct consequence of Proposition 2.2.2 and Lemma 2.2.5.
The presentation is obtained from that of Theorem 2.2.1, using the relation [ATS,AZ._jl] = [Ars,Ai5] 71
which holds in RP,. O]

Remark 2.2.7. Once again, in Corollary 2.2.6, we provide an infinite presentation of the pure
homotopy braid group seen as a reduced quotient. However, using Corollary 1.2.6, we can simplify
this type of presentation to obtain a finite one.

We next recall two classical representations of braid groups.

Definition 2.2.8. We call Artin representation the homomorphism p : By, — Aut(F,) defined as
follows:

X = Ti41,
—1
p(oi) : Tipl " Tip1TiT;q,
Tk — T if k¢ {i, i-l—l}.

Similarly, the homomorphism py : hB, — Aut(RF,) defined by the same expressions is called the
homotopy Artin representation.

As the name suggests, p was introduced by Artin in [Art47], where its faithfulness is also shown.
As for the link-homotopic version py, it is proved in [HL90] that its restriction to the pure homotopy
braid group is faithful. Furthermore, for any braid 8 € hB,, and any generator z; € RF},, the image
pr(B) (i) is a conjugate of z,—1()(;)- In particular, the kernel of p; must belong to the pure homotopy
braid group. The homotopy Artin representation pp is therefore clearly faithful.

2.3 A linear faithful representation of the homotopy braid group

This section is devoted to the definition and study of a faithful linear representation of the homotopy
braid group. We first define it algebraically, then give a procedure based on clasper calculus to
compute it explicitly. Finally, we show its injectivity and use it to prove the uniqueness of the normal
form in the homotopy braid group.
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2.3.1 Algebraic definition

Let GL(V) be the general linear group of the Z-module V introduced in Definition 1.2.13. In order
to define our linear representation v : hB,, — GL(V), we state the following preparatory lemma. Let
us denote by N; the subgroup normally generated by x; in RF, for j € {1, ..., n}; note that N; is
an abelian group.

Lemma 2.3.1. Let 8 € hB,, be a homotopy braid and C € N; a commutator in RF,. If the product
[a1]¢ - - [am]®™ is the normal form of pp(B)(C) (associated to a given order), then we have that
e; = 0 if [a;] ¢ Nyp—1p)(;)- Here 7 1(B)(j) is the image of j by the permutation induced by B~ 1.

In other words, in the image of C'€ N; by pp(8), the letter x,-1(g)(;) occurs in each factor of the
normal form.

Proof. Note first that any element of N; is sent by pp(3) to an element of Nr-1(8);)- This is clear for
the Artin generators o;, and so is it for any braid 8. Next, for a given integer k € {1,--- ,n}, consider
the endomorphism of RF,, defined by x; — 1, if ¢ = k and z; — x;, otherwise. This endomorphism
sends a commutator to 1 if it belongs to N and to itself otherwise. In addition, it sends the normal
form of any w € Nj to the normal form of 1. So by unicity of the normal form in RF, (Theorem
2.3.12), for any w € Nj, the normal form w = [a1]" - - - [ay|*™ contains only commutators in N, i.e.,

Recall from Definition 1.2.13 the linearization map ¢ : RF,, — V. Recall also from definition 1.2.7
the family F of (basic) commutator in RF,.

Proposition 2.3.2. The map
~v:hB, - GL(V)

defined for B € hB, and [a] € F by v(B)(a) = ¢ o pr(B)([er]) is a well-defined homomorphism.
Moreover, v does not depend on the chosen order on F.

Proof. Since ¢ is not a homomorphism in general, it is not clear that v is a representation. Yet we do
have that v(88") = v(8)y(8') for any two homotopy braids § and ', which is shown as follows. Let
[a] be a commutator in F and « its corresponding commutator in V. We choose some j € supp([«]) so
that [o] is in N;. Set v(8')(a) = 3, e;a; for some commutators «; € V associated to the commutators
[a;] € F and some integers e;. Then we have

1(88)(@) = 60 (BB ([a]) = 60 pu(8) ([ Tlil*) = & [T on(B) (i),

Now, using Lemma 2.3.1 we know that [«;] is in N —1(g(;) for any i. Moreover, Lemma 2.3.1 implies
that any commutator in the normal form of pp(8)([c;]) is in the abelian group N -1(gg:(;) for any i.
But note that for Cy, ..., C a collection of commutators in F such that [C;,C;] = 1 for any ¢, j, we
have that ¢(Cy ---Ci) = ¢(C1) + - - - + ¢(Ck). Hence ¢ behaves like a homomorphism on the product

[T; pn(B)([ai])*, and finally,

o(TTon®)(ai)) = Vet (pn(B)(ai)) = Y enr(B)a) = 1(B)( X eilen) ) = 1(B)1(8)(@).

7 i 7
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This shows that v is a well-defined homomorphism.

To prove the independence on the chosen order on F we use Lemma 2.3.1 again. For any 3 € hB,
and any [«a] € F, all the commutators in the normal form of p,(8)([a]) commute with each other.
In particular, if we set two orderings {[a1], ..., [am]} and {[aym)], -+, [@o@m)]} on F then the two
associated normal forms

/

pr(B)([a]) =[] -+ fam]™ = [arp(n)] = - [t )] 0™

satisfy e; = € for any ¢ and therefore ¢opy, = ¢’ opy, for the two linearization maps ¢ and ¢’ associated
to the orderings. O

Remark 2.3.3. The homomorphism v is in fact injective. Since ¢ is clearly injective, this can be
shown using the injectivity of pp. However, we will give below another proof of this result in Theorem
2.3.11 using clasper calculus, which in turn reproves the injectivity of pn. Furthermore, our approach
by clasper calculus allows explicit computations of the representation, as shown in the next section.

2.3.2 Clasper interpretation

We first give a topological interpretation of the Artin (resp. homotopy Artin), representation. We
can see the free group F, (resp. reduced free group RF,) on which B, (resp. hB,) acts, as the
fundamental group (resp. the reduced fundamental group) of the complement of the n-component
trivial braid. Therefore, an element of F, (resp. RF,) can also be seen as the homotopy (resp.
the reduced homotopy?) class of an (n + 1)-th component in this complement. On the diagram, we
place this new strand to the right of the braid and we label it by ‘o0’. Thus, the generators x; of F,
(resp RF,) are given by the pure braids A;, shown in Figure 2.7, which can be reinterpreted with the
comb-claspers (7,00) depicted in the same figure. There and in subsequent figures, we simply represent
with a circled ‘o0’ the leaf intersecting the co-th component. In this context, the automorphism p(f3)

1

T

00 1 2 7 n-1n

o SR B S
[ 1

Figure 2.7: Pure braid and clasper interpretations of the generator z;.

1 2 n-1

(resp. pp(f)) associated to an element § in B, (resp. hB,) is given on a generator x; € F,, (resp.
RF,) by considering the conjugation 1(:%) =1 jllustrated in Figure 2.8. Then, we apply an isotopy,
transforming 313! into 1, as in the proof of 2.2.2. By doing so the clasper (i,00) is deformed into a
new clasper which we are able to reinterpret as an element of F,, or RF,.

In this way, we obtain an explicit procedure to compute our representation ~ from Proposition
2.3.2 using clasper calculus, as follows. Given 8 € hB,, and « € V, the computation of v(8)(«) goes
in 3 steps:

Step 1 Consider the conjugate of the comb-clasper («,00) by the braid 5 (see Figure 2.8).

3Here by reduced homotopy class, we mean the image in the reduced quotient of the homotopy class of an element.
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p(B)

Q@

v v v * * ‘

Figure 2.8: Clasper interpretation of the Artin representation.

Step 2 Use clasper calculus to re-express this conjugate as an ordered union of comb-claspers with
oo in their support (the order comes from the order on F).

Step 3 The number of parallel copies of a given comb-clasper in this product is the coefficient of the
associated commutator in v(5)(«).

Explicit examples of computations using this procedure are given in the proof of Theorem 2.3.5 below.
We note that we have a nice correspondence between the family F, of commutators, and the
comb-claspers having oo in their support, by the following proposition.

Proposition 2.3.4. Let () = (i1 - ip—10) and (/) = (i1 - - - in—19,00) be two comb-claspers. Then
we have the relation:

() ~ [(@),(in%0)] = (@) - (in%0) - (@) " - (ino0) .
For example in Figure 2.9 we illustrate the equivalence (125400) ~ [(1250),(40)].

1 2 3 4 5 1 2 3

I\
3!

R

\ @

——  —  —
—

N

< —
«I—
&)

v v v v v v v v

Figure 2.9: The comb-clasper (125400) is link-homotopic to the commutator [(12500),(40)].

Proof. Consider the product of comb-claspers « - (i,00) - =1 - (i,00)~! (as for example on the right-
hand side of Figure 2.9). First, we use move (2) from Proposition 1.1.11 to exchange the co-th leaves
of (i,00) and (a)~!; this move creates an extra comb-clasper, which is exactly (/). Now by Remark
1.1.12 we can freely move (o/) and finish exchanging the edges of (a,0) and («)~!, thus obtaining
the product (a) - (o)™t (/) - (i,90) - (i,0) " ~ (o). O
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In practice, by iterating this proposition, we obtain a correspondence between the commuta-
tors [a] € F (or € V) and the comb-claspers (a,00). For example the equivalence (125400) ~
[[[(100),(200)],(5%0)],(4%0)] corresponds to [1254] = [[[z1,22],x5],24] in RE,.

2.3.3 Explicit computations

We now apply the 3-steps procedure of Section 2.3.2, to compute our representation v for each gener-
ator o; of hB,, and each commutator in V. In general, the image of the commutator (i1,ia, - ,i;) :=
&([i1,02, -+ ,i1]) € V by the map 7(o;) depends on the position of the indices i and 7 + 1 in the se-
quence i1, i3, - .., i, as stated in Theorem 2.3.5 below. Note that a program in Python that computes
explicitly the representation + is available on [Gra22].

Theorem 2.3.5. For suitable sequences I, J, K in {1, ..., n}\{i, i + 1}, [ # &, we have:

(1) - ) (@)

(i, K) ~ (Ji+LK) (b)

(t+ 1K) = (4,K) + (i4 + 1K) (c)

v(oi) : ¢ (Li+1,K) — (1, K) + (1igi+ 1,K) — (Ii+1,i,K) (d)

(I Ji+1,K) — (Ii+1,J:,K) (e)

(Ii+ 1,Ji,K) — (LiJi+ 1K) (f)

(W i+ LK) = S, (DT + LATLK) (9)

where in (g), the sum is over all (possibly empty) subsequences J' of J, and J' denotes the sequence
obtained from J' by reversing the order of its elements, see Example 2.5.6.

Example 2.3.6. If J = (j1, j2, j3) and K = J in (g), then v(o;) maps (i,J,i + 1) to
—(Z,Z + 17j17j27j3) + <i7j17i + 1aj27j3> + (Lj?vi + 17j17j3) + (i7j37i + 17j17j2)
_(ia.j27jlai + 17.j3) - (iaj3aj17i + 17.j2) - (Z.7.j37j27i + 17j1) + (i7j37.j27.j17i + 1)
The proof below explains how this follows from the IHX relations of Figure 2.14.

Proof of Theorem 2.3.5. Following the 3-steps procedure of Section 2.3.2, we consider the conjugate
oi(o,0)0; L and apply clasper calculus to turn it into a union of comb-claspers.

For (a) it is clear that (I,00) commutes with o;, passing over or next to it. The computation of
(b) is given by a simple isotopy of the braid shown in Figure 2.10.

1 +1 i g+l

(J,i,K,00) (J,i+1,K,00)

X |

Figure 2.10: Computation of (b).
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\ &L.@.Ll) (1,41) | (z K,0)
Y (1K) | | Koo G0
@ N Qe Y | | (4,i+1,K,00)
) | | (i,i-i—l)'l T—&.
7 !
Figure 2.11: Computation of (c)
i+1 i1

i . .
\/ gL_®_LL (ii+1) .!, | %OO) M%oo)
|

L ke g | e P X bk

,_L_Ll,(mﬂ) | % —-Q) Ja\zga (I,i—&-léK,oo)

Figure 2.12: Computation of (d).

The proofs of (¢) and (d) are similar and are given in Figures 2.11 and 2.12 respectively. There,
the first equivalence is an isotopy, and the second one is given by move (2) from Proposition 1.1.11.
For (d) there is a further step given by an I H X relation.

For (e) and (f) we apply the same isotopy as Figure 2.10 on components ¢ and ¢ + 1, thus
interchanging (1,i,J,i + 1,K) and (I,i + 1,J,i,K). Note that we also need a crossing change between
the (i + 1)-th component and a clasper edge, which is possible according to Remark 1.1.12.

Proving (g) is the last and hardest part and goes in two steps. The first step is illustrated in
Figure 2.13: we proceed as before with an isotopy and a crossing change, then we use move (8) of
Remark 1.1.13. This turns o;(i,J,i + 1,K,oo)0;1 into a new clasper which is not a comb-clasper.

v i1 1 i+l 1 g+1

(J,i,K,00)
N’/JTL...@@ ~ L0 ~ e
X | ] | ]
Figure 2.13: Turning o;(i,J,i + 1,K,oo)0;1 into a new clasper.

In the second step, we use IHX relations repeatedly to turn this new clasper into a product of
comb-claspers. This is illustrated in Figure 2.14 where J = (ji,j2,j3). We conclude by simplifying
the half-twists with Remark 1.1.14. O

Example 2.3.7. We illustrate Theorem 2.3.5 by computing completely and explicitly the represen-
tation vy on the 3-component homotopy braid group hBs. To do so, we set (1), (2), (3), (12), (13),
(23), (123) and (132) to be the generators of V, with the order of Definition 1.2.8, and we compute vy
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Ji
J2 .

1+1

73

Ji

i+1

J3

Jr

1+1

J2

J2 .

J3

Ji

i+1

Js Jo : i

i1

i+l

J2 : ijl Js

Ji

1+1

J3 : ijl J2

: iﬁjs

i+1 g1 g2 Js

i+1 j372 Ju

Jeitlgigs  Joguitlygs  gsitljgige  gsgjritlje gz joitl g

J1t+1 7o jg

Figure 2.14: Iterated IHX relations.

L L L Lt Ll Lt Lt LI

on the Artin generators o1, oo:

e e

This gives us the following matrices:

0
0
0
0
0

0

0
0
0
0
0

0
0
0

0

0

-110 O

0

1
-1 0|1 O

0
1

0

1
00 001

0001 0

00 1(0 0

0 0 0|0

0 0 0|0

0
0

0
0

-1

0
0
0

0
0
0

-1 0 0
0

1

0
0

0

0

0

1

010
0

0

1

0
0

v(o1) =

The global shape of these matrices was predicted by Theorem 2.3.5. Indeed in general we have

the following.
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Proposition 2.3.8. For 8 € hB,, a homotopy braid, the matriz associated to v([3) in the basis of V,
endowed with the order resulting from Definition 1.2.8, is given by a lower triangular block matrixz of
the following form:

By, 0o ... 0
Bs1 Bap -+ 0
Bn,l Bn,2 Tt Bn n

)

where By ; is a finite order matriz of size rk(V;) = 30} ﬁ which is the identity when B is pure.
Moreover, By corresponds to the left action by permutation k — 7 (8)(k), and Baga corresponds to

the left action on the set {(k, j)}r<; given by:

(k j)H{ (71 B)(k), =1 (B)(G))  if 7 (B) (k) < 7 H(B)(),
’ — (7B (), = HB) (k) if 7 (B)(G) < 7 H(B) (k).

Proof. The triangular shape is a direct consequence of Theorem 2.3.5. Indeed, the chosen order
respects the weight, and Theorem 2.3.5 shows that v maps a commutator of weight k£ to a sum of
commutators of weight at least k. Proposition 1.2.14 gives the size of the square diagonal blocks B; ;.
The fact that these diagonal blocks are the identity when ( is a pure braid may require some more
explanations. We only need to show this result on the generators 8 = A;; = 1(J). By Proposition
1.1.11, conjugating («,00) by (i,j) may only create a clasper (o/,00) of strictly higher degree. This
shows that v(8)(a) = (a) + (strictly higher weight commutators) so that B;; is the identity. The
block matrix Bi; describes the action on degree one comb-claspers modulo claspers of higher degree:
the claim follows on an easy verification on the generators ¢;. Similarly, the claim on the block matrix
Bs 2 amounts to focusing on degree two comb-claspers. O

Remark 2.3.9. Note that the blocks B; 1 formed by the first n columns of the matrixz encode the images
of v(B)(z;) on all the weight one commutators xy, ...,x, of V. In particular, these blocks encode the
image of the homotopy Artin representation pp(B3)(z;) on all the generators x1, ...,x, of RFy,, and
thus the full image of pp(5). Therefore, the n first columns of the matriz completely determine the
full matriz v(8). Moreover, each block B;; encodes the action of v(8) on weight i commutator up to
higher weight commutators in V. At the clasper level, this corresponds to the action on the degree i
comb-claspers of the form (a,0), up to claspers of higher degrees. According to Proposition 1.1.11,
we can exchange clasper edges with other clasper edges or with strands of braids up to higher-degree
claspers. This implies that each block B;; is determined by the permutation w(3) associated with the
braid 8 € hB,.

2.3.4 Injectivity

In order to prove the injectivity of v, we need the following preparatory lemma.

Lemma 2.3.10. Let (i1, -- ,ij) be a comb-clasper. We have

7(1(“77”))(2[) = (Zl) - (ila ce ’il)7
where, on the right-hand side, (i1,--- ,i;) now denotes the corresponding commutator in V.
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Proof. Following the 3-steps procedure of Section 2.3.2, we consider the product
(7:17 e ,il)(il,OO)(il, o ail)il

and re-express it with only comb-claspers with oo in their support. To do so, as illustrated in Figure
2.15, we apply move (2) from Proposition 1.1.11 on the leaves on the 4;-th component, which introduces
the comb-clasper (iy,--- ,i;,00)"%, and we simplify (i1,--- ,i;) and (i1, --- ,i;) 7L O

1 71 1 n 1 %1 1 n

Figure 2.15: Proof of Lemma 2.3.10.

We can now state the injectivity of the representation v from Proposition 2.3.2.
Theorem 2.3.11. The representation «y : hB,, — GL(V) is injective.

Proof. Let 8 € hB,, be such that v(5) = Id. First, Proposition 2.3.8 imposes that 3 is a pure braid;
indeed the block Bj; must be the identity, which means that the permutation 7(5) is trivial.
According to Theorem 2.1.11 we can consider a normal form for 3:

B =]l

for some integers v,,.

Let I < {1, ..., n} be any sequence of indices. Let also V; be the subspace of V spanned by
commutators with support included in I. We can then define the associated projection py : V —
Vi, and its composition with the restriction of v to V;, denoted by 7 := pyo Vv, - Note that it
corresponds to keeping only the components with index in I. It is clear using Proposition 1.1.11
that v(hP,)(V\Vr) < V\Vy, thus for 81, B2 € hP, we have that v7(8152) = v1(B1)y1(B2). Moreover
(1)) = Id for any comb-clasper (o) with supp(a) ¢ I. Hence v7(8) = v7(85) for 5; defined by:

,3] = H (Oé)y"‘.

supp(a)cl

Now we show by strong induction on the degree of («) that v, = 0. For the base case, we consider
I of the form I = {i, [} with ¢ <[. Using Lemma 2.3.10 we obtain:

(3@ = (1)) .
= (1) — vy - (il).
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Since S € ker(7y), we have that v;(5)(l) = (1), and this implies that v, = 0 for any (a) of degree one.
To prove that v, = 0 for any («) of degree k we take I of length k£ + 1 and using the strong induction

hypothesis, we get then:
Br=1] (@

supp(a)=1
It is worth noting that for any comb-clasper («) with support I and any commutator (/) € V;, we
have v7(1(®)(a/) = (/). This follows from the 3-steps procedure of Section 2.3.2 and Remark 1.1.12
given that supp(«) N supp(a/,00) = 2. Thus thanks to Lemma 2.3.10, denoting by [ the largest index
of I we finally obtain:

BN =0 = Y va- ()

supp(a)=1
Because [ € ker(7y), we have that v;(5)(l) = (1), and this implies v, = 0 for any («) with support I.
Repeating the argument for any I < {1, ..., n} of length k + 1, we get that v, = 0 for any («) of
degree k, which concludes the proof. ]

Corollary 2.3.12. The normal form is unique in hB,, i.e., if 3 = [ [()"> = [[(a)"> are two normal
forms of B for a given order on the set of twisted comb-claspers, then v, = V., for any («).

Proof. The proof follows closely the previous one. As before for a given I < {1, ..., n} we have
~v1(B) = ~v1(Br) for Br defined by :

Br = H (o) = H ().

supp(a)cl supp(a)cl

We show again by strong induction on the degree that v, = v/, for all comb-claspers a. The base
case is strictly similar, but for the inductive step one cannot in general write Sy with only comb-
claspers with support I. However, by Remark 1.1.12, two comb-claspers (a) and (o) satisfying
supp(a) nsupp(’) = 2 commute in hB,,. Hence, any comb-clasper with support equal to I commutes
with any comb-clasper with support included in I. In particular, we get:

v@BOm) =y | J] @™ |ew| ] (@™]m)

supp(a) &1 supp(a)=1
=1 [T (@ ow [T (@ |m).
supp(a)&! supp(a)=1

Since comb-claspers () with supp(«) & I have degree < k—1 where k is the length of I, by induction
hypothesis we have then,

vl J] @=|m=vw| [] (@%=]m)

supp(a)=1 supp(a)=1

By Lemma 2.3.10 we compute each term, thus obtaining:



Clearly, the commutator family («) with support equal to I is a free family in V, so their coefficients
Ve and v/, on both sides coincide, which complete the induction and the proof. O

Remark 2.3.13. Corollary 2.5.12 shows that the numbers v, of parallel copies of each comb-clasper
in a normal form are a complete invariant of pure braids up to link-homotopy. We call those numbers
the clasp-numbers. Other well known complete homotopy braid invariants are the Milnor numbers
[Mil54]. As a matter of fact, Milnor numbers can be used, using the techniques of [Yas09], to give
another proof of Corollary 2.3.12. In this thesis we will not try to make explicit the relation between
clasp-numbers and Milnor numbers, since we work solely with clasp-numbers.

2.4 A foretaste of the torsion problem

V. Lin in the Kourovka Notebook [MK14] asks the following: does the braid group B, have proper
non-abelian torsion-free factor-groups? P. Linnell and T. Schick in [LT07], give a positive answer to
the question, showing that B, is residually torsion-free nilpotent-by-finite. However their approach
does not provide explicit examples. The homotopy braid groups hB,, appear as potential candidate.
Indeed, S. P. Humphries shows in [HumO1] that hB,, is torsion-free for n < 6. In this section we
extend this result to n < 10, using a new approach based on clasper calculus. Note that we will
show the general result for all n later in the manuscript (see Section 4.3), using the broader context
of homotopy welded braids. In this section, we focus on the study of torsion in the homotopy braid
group, confining ourselves to their classical framework. Later, we will build on the results established
in this section and extend them using the welded context.

2.4.1 Preparation

Throughout this section, we use the notion of normal form (Definition 2.1.8) in the pure homotopy
braid group hP, as a product of comb-claspers. To do this, we fix an order on the set of twisted
comb-claspers, inspired by Definition 1.2.8. For two twisted comb-claspers («) = (i1 ---4;) and (/) =
(¢} ---1),) we set (o) < (o) if:

o deg(a) < deg(d’), or
o deg(a) = deg(a’) and 4y .. .4 <jex @) ...1].
This order is used implicitly throughout the rest of the section.

Definition 2.4.1. Let us take an integer k the equivalence relation generated by surgery along clasper
of degree k and link-homotopy is called Cyx-homotopy. Given 3 and ' two braids we use the notation

lh
0~
Ch

to mean that 0 and 0’ are Cj-homotopic.
Definition 2.4.2. For two integers k < n we define a projection map, py : hP, — hP, that sends a
pure homotopy braid in normal form 0 = [(a)"*?) to its image p,(9) = ] (a)"@.

deg(a)<k

38



Proposition 2.4.3. Let 0,0/ € hP, be two pure homotopy braids, then for all k € N the following
assertions are equivalent:

(i)
o2y
Ck11
(i)
Vo (0) = vo(0), Vdeg(a) <k,

(iii)
pr(0) = pr(0").

Proof. Let us first show that (i) implies (i) i.e., for any comb-clasper («) of degree k or less, we have
Va(0) = v4(07) for any clasper T for 6 of degree k + 1. To do so, we drag T’ by an isotopy along  to
re-express 07 as the product #17" for some claspers T” for 1 of degree k + 1. By lemma 2.1.7, there
exist a product (ay)--- (o) of degree k + 1 comb-claspers such that 17" = (ay) - - - (). Therefore,

o7 = (H(a)ya(e)) (1) -+ (o),

with [](a)”*(®) the normal form of #. Starting with this expression, we apply the induction from the
proof of Theorem 2.1.11, to get the normal form of §7. Note that in the process, we will only create
claspers of degree greater than k + 1, which does not change the value of the clasp-numbers v, with
deg(a) < k.

Let us now prove that (%) implies (iii). We consider the normal forms 6 = [](a)"*® and
0 = [T(e)*@). 1t is clear that

@)= [] @*@= ] (@ =p)

deg(a)<k deg(a)<k

if v4(0) = v, (0) for all comb-claspers («) with deg(a) < k.

Finally we conclude showing that (i) implies (7). Since C1-moves allow to remove claspers of
degree strictly higher than k, it is clear that 0 is Cj41-homotopic with its projection pg(6). So by
transitivity if pg(6) = px(0’) then 6 and 6" are Cj1-homotopic, and the proof is complete. O

Let us fix p a prime number. Let A € hB,, be the homotopy braid illustrated in Figure 2.16, given

by
-1 _-1 —1
A=o] 0, O,y

We denote by 7 the cycle (pp—1 --- 2 1) = w(\) associated to A.

Figure 2.16: The homotopy braid .
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Definition 2.4.4. Let us denote by O a set of representative of the orbits for the action of 771 on
the subsets of {1,--- p} (i.e., 7 ({ir, -~ ,u}) = {77 @1), -~ ;7 (0t)}). We define R as the set of
comb-claspers with support in O and Ry as the subset of degree k comb-claspers in R. Finally, we
order R with the order fixed above.

Example 2.4.5. Let illustrate Definition 2.4.4 with p = 5. The action of 7=! := (12345) on the
subset of {1,2,3,4,5} contains T non-empty orbits. We choose a representative for each of them, thus
obtaining:

O = {{1},{1,2},{1,3},{1,2,3},{1,2,4},{1,2,3,4},{1,2,3,4,5} }.

This gives us the following ordered set of comb-claspers:
R = {(12),(13),(123),(124),(1234),(1324),(12345),(12435),(13245),(13425),(14235),(14325)}.

which is partitioned by the subsets Ry = {(12),(13)}, Ro = {(123),(124)}, Rs = {(1234),(1324)} and
R4 = {(12345),(12435),(13245),(13425),(14235),(14325) }.

Lemma 2.4.6. For any comb-clasper («), not necessarily in R, and any pair (a1),(c2) € Ry with
k < p— 2 we have the three following relations.

(1) There exist some integers | € N such that,

Nerx'= ] ().

(2) We have,
Vo, ()\l(ag))\_l) :{ L if (o)

(3) For any integer | € N,

e (V) =L e 20

Proof. Let us denote by i the isotopy sending A1A™! to 1, then A(a)A\~! = i(a) and supp(i(a)) =
7~ (supp(a)), thus for some integer I, the support supp (il(a)) belongs to O. Finally, using move (8)
from Remark 1.1.13 and IHX relations, we turn 4!(a) into a product of comb-claspers and we get the
first relation.

For the second one, if I # 0 then supp(i'(a2)) ¢ O and therefore v, (i'(a2)) = 0. Moreover, it is
clear that vy, (a2) = 0 if (1) # ().

Finally, the first relation implies the third if deg(a) # p — 1. Otherwise, let us consider the global
shape of degree p — 1 comb-claspers. If (o) = (1,--- ,p—1,--- ,i,p) with ¢ < p — 1 then by move
(8) from Remark 1.1.13 and IHX relations, i(«) is given by a product of comb-claspers of the form
(1i+1,---,2,---,p) as schematically illustrated in Figure 2.17.

If () =(1,--+ 5, ,i,--- ,p—1,p) with 1 <i < j < p—1 then by IHX relations, i(a) is given
by a product of comb-claspers of the form (1,--- 7+ 1,--- i+ 1,--- ,p)or (1,--- ji+1,---.2,--- p).
This fact is depicted in Figure 2.18. O
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Figure 2.17: Computation of A(1,--- ,p—1,--- i,p)A~L.
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Figure 2.18: Computation of A\(1,--- ,7,--+ ,i,--- ,p — 1,p)A~L.

Definition 2.4.7. Let 0 € hP, be a pure homotopy braid, we say that 6 is in nice position if the
normal form of 0 satisfies:

[T =@ = T .

(@x)eR

In other words we require that v, (60) =0 if (o) ¢ R

Remark 2.4.8. We emphasize that the normal form depends on the order on comb-claspers. Likewise,
the property of being in nice position depends on the chosen order. Additionally, being in nice position
also depends on the chosen set of orbit representatives O.

Lemma 2.4.9. For any pure homotopy braid 0 € hP, the product X is conjugate to 0*X, for some
pure homotopy braid 0* € hP, in nice position.

Proof. Suppose that in the normal form of 0, the clasp-number vy := v,,(6) is not zero for some comb-
clasper (o) ¢ R. Let us further assume that (ap) is of minimal degree, i.e., we have deg(ap) < deg(w)
for all (o) ¢ R such that v,(0) # 0. Then according to equality (1) in Lemma 2.4.6, for some integer [,
the conjugate A (ag) A" is a product of comb-claspers in R. We consider and compute the conjugate
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O’ X of GA:

Ne(ag)or* _ 6)\< I1 )\k(ao)”o)\k>,

0<k<l

-1
oA ( I1 )\k(ao)”’)\_k> AT,

0<k<l

I
/_\O/_\/\
N
£
A
>~
ES
Q
S
SN—
S
>
-
N~ N

-1
A () o Nk 9( 11 )\k(ao)”o/\k> A,

0<k<l 0<k<l
—1
- ( I1 Ak<a0)voxk> (ozo)_”°0< I1 )\k(ag)”o/\_k> (/\l(ao)”(’)\_l) A
O<k<l O<k<l

Now note that, according to Lemma 2.4.6, the conjugates A\¥(ag)A\™* for 0 < k < [ can be seen
as products of comb-claspers with same degree as (o). Moreover thanks to moves (2) and (4) of
Lemma 1.1.11, two comb-claspers commute up to claspers of higher degree, and by Lemma 2.1.7 we
can assume that these higher degree claspers are also comb-claspers. Then in the previous expression,
up to comb-claspers of degree greater than that of (ag), we can simplify the terms A\*(ag)A ™" for
0 < k < I with their inverse to obtain:

0 = ()0 (N2 ™) [ T] (@
deg(ao) <deg(r)

Since the factor ag° appears in the normal form 6 = H(a)”a(e), we can, using the same argument,
express 6’ as follows:

0= TT (@=@](N@o)or™) [T (@

(@)#(a0) deg(ap)<deg(a)

We recover the normal form of 6" using the same method as in proof of Theorem 2.1.11, rearranging
claspers degree by degree. Let us compare the clasp-numbers of § and ¢'. First, if deg(a) < deg(ayg)
then v, (0) = v4(0") since no claspers of degree lower than (o) appeared in the procedure. Second,
it is clear that v4,(0") = 0. Finally, v4(0") = v4(0) for almost all others comb-claspers («) of same
degree as (o). The only exceptions come from the conjugate A (ag)*°A~! and involve comb-claspers
belonging to R.

In summary, for any comb-clasper («) ¢ R of degree deg(a) < deg(ayg) the clasp-numbers v, (6’)
remain unchanged, except for v, (') which is now zero. Hence, by repeating the above argument, we
eventually obtain another conjugate of O of the form 6"\ satisfying v, (0”) = 0 for any comb-clasper
(o) ¢ R such that deg(a) < deg(ap). Moreover, since above the degree p all claspers are trivial up to
link-homotopy, using the same argument degree by degree, we will finally obtain a conjugate 8*\ of
O with 6* in nice position.

O
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Lemma 2.4.10. Let 6 € hP, be in nice position. Then for any comb-clasper (a) € Ry, with k < p—2
we have the following relations on the clasp-numbers:

Va ((ON)P) = v (Pr_1(O)N)P) + v (0).

Moreover for the comb-clasper (o) = (1,--- ,p) we similarly have:

Proof. Since we ordered comb-claspers along their degree and since # is in nice position, for any

k< p—1,if we set
Si= [] (®,
()eRy

then 6 is Cj41-homotopic with pg_1(0)dx. This gives us the following relation:

(ON)P = (ﬁ Alexl) PERC (ﬁ ()\lpk_l(O))\_l> (Alakxl)> AP,

1=0 Pt \ 10

To handle this expression and compute the clasp-number of (\)?, we need the following claim.

Claim 2.4.11. Let T be a degree k < p — 1 clasper for the trivial braid and let © € hP, be a pure
homotopy braid. Let also () be a degree k comb-clasper. Then,

(1)
017 © 1Tg.

Cry1

(2)
Vo (017) = 1,(0) + v, (17).

Statement (1) is already true up to Ciii-equivalence and follows from [Hab0Ob, Proposition
5.8]. By Lemma 2.1.7, the clasper T is given by a product of comb-claspers of degree k. Then, by
statement (1), up to Cj1-homotopy, we can freely reposition these comb-claspers in the normal form
of ©. Therefore, using the implication (i) implies (i) of Proposition 2.4.3 we deduce statement (2).

For any integer I, the conjugate A\';A~" is given by a union of claspers of degree k. Then, using
statement (1) of the claim, we shift these claspers to the right in the above expression, and obtain:

p—1 p—1
oanp (]‘[ ()\lpkl(ﬁ))\_l)> AP (H )\ldk)\_l> :
=0

C,
k+1 1=0

By simplifying the first product with AP, and writing 05, as the product ] (a)**(® we obtain:
(@)eRy

p—1 Ve
(OA) CZL e N (TT T1 ()\l(a))\_l> )

kil 1=0 (a)eRy
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For any comb-clasper () € R and any integer [, the conjugate A (a)A\~! is a clasper of degree

k. Then, for any comb-clasper (ag) € Ry, using statement (2) repetitively we obtain the following
equality:

Vao((H)\)p) = Va()((pk,l(ﬁ))\)p) + ”Z_]l Z Ve (0)Vay ()\l(a))\*l)
1=0 (a)eRy

Now, according to relation (2) of Lemma 2.4.6, if k£ < p — 2, the only non-zero term in the sum is
the factor va,(0)vag (o) = Vao(0). This gives us the first equality of the lemma. Finally if (ag) =
(1,--- ,p), by relation (3) of Lemma 2.4.6, for all [, we have v, (A (@)A™") = 1if () = (1,--- ,p) and
Voo ()\l(l, e ,p))\*l) = (0 otherwise. This gives us the second equality of the lemma. ]

2.4.2 First results

Definition 2.4.12. By induction, we construct a family {6y }r<p—2 € hP, of pure homotopy braids as

follows:
g = 1,

Op1 1= 9k< I1 (@)_Va(wmp)>-
(o)

ERk+1

We emphasize that the construction of 0.1 requires clasp-numbers of (0xA)P, so it is necessary to
compute its normal form.

Remark 2.4.13. Since the order on R corresponds to the one on the set of all comb-claspers, and
because we chose an order by increasing degree, we have that the family {0y}r<p—2 € hP, of pure
homotopy braids are in nice position.

Lemma 2.4.14. Let 0 € hP, be in nice position. If (OX\)P = 1 then for any k < p — 2, we have

o "t o,

Cr+1
where {0k} r<p—2 is defined in Definition 2.4.12.

Proof. Firstly, thanks to (i) equivalent to (i4) in Proposition 2.4.3 and since 6 and 6y, for any k < p—2
are in nice position, it is equivalent to show that for any £ < p — 2 and any («) € Ry,

Va(0) = vo(0g).

We proceed by induction on the degree k of («). Let us start with (a) € Rq1; by Lemma 2.4.10 we

have
Vo (0) = —vo(AP).

Moreover by construction we also have:
Vo(01) = —va(NP).

Thus v4(0) = va(61) for any (o) € R1 and the initialization step is done. For the induction we use
Lemma 2.4.10 again and, for any («) € Ry with k < p — 2, we get the relation:

Va(0) = —va((pr—1(0)A)P).
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Furthermore, by construction we also see that

Va(Or) = — va((Ok—17)P),
= — Va((Pr—1(6k—1)M)P).

Now by induction and (i) equivalent to (iii) in Proposition 2.4.3, we have that px_1(0) = pr—1(0x_1)
then v, (0) = vo(0k) for any («) € Ry, which concludes the proof. O

Lemma 2.4.15. Let 0 € hP, be in nice position. If (OA\)P = 1 then
Vi, p((0p—2A)P) =0 mod [p],
where 0p,_2 1s defined in Definition 2.4.12.

Proof. Consider first the equality from Lemma 2.4.10:

1/17.‘.7p(<9/\)p) =p X Vlj...’p((9> + Vl,‘..,p((pp_Q(e)A)p)

By Lemma 2.4.14, 6 and 6,_2 are Cp,_i-homotopic. Hence by Proposition 2.4.3, we have

pp—2(0) = pp—2(0p—2) = Op—2,

thus v1 ... p((pp—2(0)A)P) = v1.... p((6p—2A)P) and the above equality becomes:

Vi, p((Op—2A)P) = —p x 1. 5(0).
O

The following theorem is well-known, it appears for example in [HL90, HumO01]; we give here a
new proof based on clasper calculus.

Theorem 2.4.16. The pure homotopy braid group hP, is torsion-free for any n € N.

Proof. Let 0 € hP, with 6 # 1 be a pure homotopy braid and let k € N be the minimal integer such
that ¢ is not C1-homotopic to the trivial braid (i.e., k = min{l € N | p;(f) # 1}). Then we have:

o lh (a)ua(H)
1 deg(a)=k
ILL (a)mua 6),

C
Rl deg(a)=k

and 0™ is not Cy,1-homotopic to the trivial braid for any m. O

Lemma 2.4.17. If there is torsion in hB,, then for some prime number p < n there exists a torsion
element of order p in hB,,.
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Proof. Let B € hB,, be a torsion element of prime order p and 7(f) its associated permutation. Now,
by Theorem 2.4.16, h P, is torsion-free, thus 7(/3) # 1 and 7(f) is a torsion element of order p in the
symmetric group S,. More precisely 7(f3) is a product of p-cycles (p < n) with disjoint supports. Let
us denote by (i1, ,ip) one of them, and by G the subgroup of hB,, generated by elements whose

associated permutation sends the set {i1,--- ,ip} to itself. The homomorphism ¢ : G — hB,, which
keeps only the strands iq,--- ,ip, sends [ onto a torsion element of order p in hB, and the proof is
complete. ]

Remark 2.4.18. This lemma also holds for the usual braid group By, and the proof works the same.
Theorem 2.4.19. There is no torsion in hBy, for n < 10.

Proof. According to Lemma 2.4.17, we only need to show that for any prime number p < 7 there is
no torsion elements of order p in hB,. But, if such an element exists, it should be a conjugate of
g\, for some 6 € hP,, assumed to be in nice position by Lemma 2.4.9. We developed a program in
Python, as presented in Appendix A and accessible on [Gra22], which constructs the family {0y }r<p—2
defined in Definition 2.4.12 for a given prime number p and returns v ... ,((0p—2A)P). We ran it for
p = 2,3,5,7 and each time vy ... ,((6p—2A)P) = 1 so the condition of Lemma 2.4.15 does not hold and
hB,, is torsion-free for n < 10. O

Remark 2.4.20. It is likely that this method will enable us to extend the result to a larger number of
strands. A more optimized program or greater computing power, would enable us to test the next prime
numbers. However, it seems unlikely that a general result for any number of strands could be obtained
this way. To demonstrate such a result, we need to consider the wider context of welded objects. This
is done in Section 4.3, where we will reapply and adapt the ideas developed here to welded setting.
Nevertheless, we have chosen to keep this first weak version in this manuscript, for the following two
reasons. Firstly, this is the path we followed in our thesis work. We first addressed the torsion problem
as presented in this section, then reconsidered it with welded techniques. Secondly, this illustrates the
strength of welded theory. Indeed, we obtain a complete result while the same reasoning fails in the
classical context.
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Chapter 3

Links up to link-homotopy

In this chapter, we will focus on the study of links up to link-homotopy. More precisely, we will
describe in terms of clasp-numbers variation when two normal forms have link-homotopic closures.

The main purpose of this section is to use clasp-numbers, defined in Remark 2.3.13 above, to
provide an explicit classification of links up to link-homotopy. In this way we recover results of
J.W. Milnor [Mil54] and J. Levine [Lev88] for 4 or less components, and extend them partially for
5 components. To do so we first revisit in terms of claspers the work of N. Habegger and X.-S. Lin
[HL90].

Remark 3.0.1. Y. Kotorii and A. Mizusawa also addressed the question of using clasper theory to
classify 4-component links up to link-homotopy in [KM20] and [KM22]. In their first paper, they
use a different kind of normal form, arranged along a tetrahedron shape, adapted to the 4-component
case. The main difference with the present work, however, is that their result makes direct use of
Levine’s classification. Here we instead reprove the latter using Theorem 3.1.8 and clasper calculus.
Our approach is likely to extend to the general case: as an illustration of this fact, we treat the
algebraically-split 5-component case in Section 3.2.4. Their other paper also also follows a similar
direction. In this work, they ultimately adopted a similar technique and give a complete classification
for links with at most 5 components.

3.1 Habegger—Lin’s work revisited

There is a procedure on braids called closure, that turns a braid into a link in 5. The question is
to determine when two braids have link-homotopic closures. The purpose of this section is to answer
this question by following the work of [HL90] and reinterpreting it in terms of claspers. Let us first
recall from [HLI0, Theorem 1.7 & Corollary 1.11] that for any integer n we have the decomposition:

th - th—l X RFn—l

where the first term corresponds to the braid obtained by omitting a given component, and the second
term is the class of this component as an element of the reduced fundamental group of the disk with
n — 1 punctures.

In particular, if we iterate this decomposition by omitting the last component recursively, we
obtain the decomposition illustrated in Figure 3.1 (see Convention 3.1.1) :

hP, = RF; x --- x RF,,_1.

47



Moreover the normal form in hP, with respect to the order of Definition 2.1.9 corresponds to this
decomposition, where each individual factor is in normal form with respect to the order of Definition
1.2.8.

‘)W
L2 A A \d

Figure 3.1: The Habegger—Lin decomposition in terms of clasper.

Convention 3.1.1. In figures, a box intersecting several strands of 1 represents |

a product of claspers whose leaves may or may not intersect those strands, and

are disjoint from all others strands. When each clasper in such a box intersects @
a given strand, this is shown by the graphical convention shown on the right (see

Figures 3.1, 8.3, 3.4).

To answer the question, N. Habegger and X.-S. Lin in [HL90] study an action of hP,, on hP,_1 x
RF,_1, which leads them to considering certain elementary operations (&;,%; )k, (zi,z;)r and (Z;,2;),
whose definition we recall here in terms of claspers.

Definition 3.1.2. Let 5 € hP, be a pure homotopy braid, and let i, k be two distinct integers in

{1, ..., n}.

o (Z;,%)1(B) is the pure homotopy braid 3> - 1O where A and (ik)~! are degree one claspers
as shown in the left-hand side of Figure 3.2.

o (x;,2:)k(B) is the pure homotopy braid 1% . 82" where A’ and (ik)~' are degree one claspers
as shown in the central part of Figure 3.2.

o (Z:,2:)k(B) is the pure homotopy braid 10¥)3 . 1M where (ik) and (ik)™ are degree ome
claspers as shown in the right-hand side of Figure 3.2.

Remark 3.1.3. In fact, in [HL90] those operations are only defined for k = n, but the definitions
extend naturally to any k # i. Moreover, Figure 2.8 in [HL90] does not correspond ezxactly to Figure
3.2, due to convention choices. Firstly, in [HL90] braids are oriented from bottom to top whereas we
orient them from top to bottom. Secondly, here the basepoint of the second term in the decomposition
hP, = hP,_1 X RF,_1 is taken above the n — 1 punctures, and not under the n — 1 punctures as in

[HL90].
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Figure 3.2: The elementary operations (Z;,%;)k, (%i,zi)k, and (Z;,z;)k.

By taking a closer look at the operations (Z;,Z;)r and (Z;,x;)r and more precisely their effect on
the decomposition hP, = hP,_1 x RF,_1, N. Habegger and X.-S. Lin come to the following central
definition.

Definition 3.1.4. Let § € hP,, we set § = 6w a decomposition in hP, = hP, 1 x RF,_1. A
partial conjugate of 8 is an element of hP, of the form O wA™! for some \ € RF,_1. We speak
of a k-th partial conjugation, or partial conjugation with respect to the k-th component, when the
decomposition hP, = hP,_1 x RF,_1 is obtained by omitting the k-th component.

The computations in [HL90, p. 413] show that the operations (%;,%;); and (Z;,x;); are partial
conjugations. We use clasper calculus to reprove it for the operation (#;,%;)x in Proposition 3.1.5 and
later for the operation (Z;,z;); in Proposition 3.1.7.

Proposition 3.1.5. Let 8 be a pure homotopy braid. The operation (Z;,@;)r(5) is the k-th partial
congugation of 5 by x;. In particular the operations (T;,T;), with i # k in {1, ..., n} generate the
partial conjugations.

1 1 k n 1 1 k n
0 C l A
L — &/ ]
2! L b i i)

v l l v v l l v

Figure 3.3: The k-th partial conjugation by x;.

Proof. We set first § = 6w the decomposition of 8 in hP, = hP,_1 x RF,,_1 obtained by omitting
the k-th component. Through surgery, we see the factor 8 € hP,_1 as a union C' of simple claspers
for the trivial braid 1, where the k-th component is disjoint from and passes over all claspers in C.
The factor w € RF,_1 is given by a union C’ of simple claspers for the trivial braid, all containing &
in their support. In this setting, the k-th partial conjugation by z; (i.e., 8 — fz;wz; 1) corresponds
to the product C(ik)C’(ik)~! as shown in the left-hand side of Figure 3.3. To prove the proposition
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it suffices to slide the leaf k of (ik) upwards by an isotopy (this is possible since C' is disjoint from
the k-th component), and slide the leaf i downwards: by moves (2) and (4) from Proposition 1.1.11
this creates claspers with repeats, which by Lemma 1.1.10 are trivial up to link-homotopy. O

J. R. Hughes in [Hug05] showed that partial conjugations generate conjugations. We reprove this
result below using clasper calculus.

Proposition 3.1.6. Partial conjugations generate conjugations, in other words operations (T;, ;)
generate operations (T;,x;)g fori # k in {1, ..., n}.

Proof. It suffices to show that partial conjugations generate all conjugations by any comb-clasper
(ik). Let B € hP,, seen as the surgery on 1 along a union of simple claspers denoted C. By the
procedure given below, we decompose C into a product C' ~ CC;CiC} . such that:

- C; 1 is a union of claspers each having ¢ and % in their support,

- Cj, resp C}, is a union of claspers, each having i, resp k, in their support, and such that the
k-th, resp i-th, component of 1 is disjoint from and passes over all claspers in C;, resp Ck,

- C'is a product of claspers that are disjoint from and pass under the i-th and k-th components.

1 7 k n
c
| & |
| C; |
I <4 I
| Ci |
[
Ci

4  : 4 4
Figure 3.4: Decomposition C' ~ C‘CiCkCi’k.

This decomposition is illustrated in Figure 3.4. To obtain such a decomposition, we first consider
those claspers in C that are disjoint from the i-th and k-th components, and we apply move (3) from
Proposition 1.1.11 to ensure that they all are behind those components. We use moves (2) and (4)
from Proposition 1.1.11 to obtain a decomposition C' ~ CCy where all claspers in Cy have either i or
k in their support. Next, we consider those claspers in Cj that are disjoint from the k-th component:
we apply move (&) from Proposition 1.1.11 to ensure that they all are behind this component, and
then use again Proposition 1.1.11 to obtain a decomposition C' ~ C'C;C, where all claspers in C}
have £ in their support. Finally, by the exact same way we have a decomposition C1 ~ CyC; ; with
C and C; ) as desired.

Note that the product (C’C,-)(CkC’@k) corresponds to the decomposition hP, = hP, 1 X RF,,_1
given by omitting the k-th component. We can then apply a k-th partial conjugation by x; to obtain
CCi(ik)CrCy 1 (ik) ™. We then exchange the relative position of (ik) with C} using moves (2) and
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(4) from Proposition 1.1.11, this creates a union K j of claspers with ¢ and k in their support, such
that:

(ik)Cy, = C K x(ik). (3.1)

We can then freely (up to link-homotopy) exchange (ik) and C;j, by Remark 1.1.12, thus obtaining
the decomposition CC;CK; 1,C; . Now we similarly use moves (2) and (4) from Proposition 1.1.11
to exchange C; and C},, which creates a union R;j of claspers with ¢ and k in their support, such
that:

C;Ch = CkRi,kCi- (3.2)

We obtain in this way the product (C’Ck)(Rika’iK@kCi’k) corresponding to the decomposition hP,, =
hP,_1xRF,_1 given by omitting the i-th component. We can then perform an i-th partial conjugation
by x to obtain CCy(ik)R; xCiCy 1 K; 1 (ik) ™" that is link-homotopic to CCy,(ik)R; xCiCi x(ik) ™ Kk
according to Remark 1.1.12. Then with further partial conjugations, we relocate K;j and we ob-
tain CCy(ik)K; x R; xC;C; 1 (ik)~". Finally using equality (3.1) and (3.2) from above we simplify the
expression as follows:

éCkKijk(ik‘)Ri’kCiCijk(ik‘)_l ~ C’(’ikﬁ)ckRijkCiCLk(ik‘)_l ~ C‘(z’k’)CiCkCi,k(z'k)_l,

and we conclude by exchanging C' and (ik) via an isotopy, thus obtaining the conjugate (ik)C (ik)~'.
O

Proposition 3.1.7. The operations (z;,T;) generate the operations (T;,z;) fori # k in {1, ..., n}.

Proof. Clearly, from the clasper point of view, the operation (z;,z;)x is the composition of the inverse
of the operation (z,7)); with the conjugation by the comb-clasper (ik) (i.e., the operation (Z;,z;)x).
Hence we conclude the proof using Proposition 3.1.6. 0

We state now the main classification theorem of links up to link-homotopy.

Theorem 3.1.8. [HL90, Hug05] Let B, 8 € hP, be two pure homotopy braids. The closures of (3
and B’ are link-homotopic, if and only if there exists a sequence 8 = Py, 1, ..., Bn = B’ of elements
of hP, such that Bj41 = (%;,%;)k(B;) for some i # k in {1, ..., n}.

Proof. Firstly, [HL90, Theorem 2.13.] states that 8 and ' have link-homotopic closures if and only
if there exists a sequence 3 = 3y, 31, , Bn = B’ of elements of hP, such that $;;1 is a conjugate, or
a partial conjugate of ;. Moreover, as mentioned above (Proposition 3.1.5) the operations (z;,%;)
generate the partial conjugations, and we conclude the proof using the result from [Hug05] (see
Proposition 3.1.6). O

3.2 Link-homotopy classification

This section is dedicated to the explicit classification of links up to link-homotopy. The starting point
of the strategy is Theorem 3.1.8 which allows us to see links up to link-homotopy as pure homotopy
braids up to operations (z;,Z;)r with i # k in {1, ..., n}. Moreover, with Corollary 2.3.12 we show
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that a braid is uniquely determined by its normal form, encoded by a sequence of integers: the clasp-
numbers. The goal is then to determine how the normal form, or equivalently the clasp-numbers,
vary under operations (Z;,%;)r. By using clasper calculus, we recover in this way the link-homotopy
classification results from J. W. Milnor [Mil54] and J. Levine [Lev88] in the case of links with at most
4 components. We then apply these techniques to the 5-component algebraically-split case.

In order to use Corollary 2.3.12, we need to fix an order on the set of twisted comb-claspers. In
the rest of the document, we fix the following order, which is inspired from Definition 1.2.8. For two
twisted comb-claspers (o) = (i1 ---4;) and (o) = (4] - - - 1},) we set (a) < () if:

o deg(a) < deg(c’), or
o deg(a) = deg(a’) and 4y .. .4 <jex @) ...1].

This order is used implicitly throughout the rest of the document.

3.2.1 The 2-component case.

As a warm-up, we consider the 2-component case in order to illustrate the techniques of this section.

Let L be a 2-component link, then L can be seen as the closure of a 2-component string-link 5.
As mentioned in Remark 2.1.5, up to link-homotopy, string-links correspond to pure braid. Thus by
Corollary 2.3.12 there is a unique integer v15 such that:

B~ (12)"12,

So by Theorem 3.1.8 the link-homotopy class of L is uniquely characterized by the integer 15 modulo
the indeterminacy introduced by the operations (#2,22)1 and (21,71 )2.

1 2
A 1
1 2
I I V1o QL__@_L)
Uy 2 & edy > I
* ‘ (12) Ledy (I)

\/ \/

Figure 3.5: Operation (#2,72); on the 2-component normal form.

However, in both cases, |[supp(A) nsupp(12)| = 2 as illustrated in the right-hand side of Figure 3.5
for (z2,72)1. Thus, Remark 1.1.12 shows that (z2,72); and (21,71)2 leave the normal form unchanged,
and the clasp-number vy is therefore a complete link-homotopy invariant for 2-component links. Note
that this number is in fact the linking number between the two components, which is well known to
classify 2-component links up to link-homotopy.

3.2.2 The 3-component case
Let L be a 3-component link seen as the closure of the normal form:

(12)"12(13)"13(23)"22 (123) 122,
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Figure 3.6: Operation (22,22)1 on the 3-component normal form.

for some integers v19, V13, 23 and vio3. See the left-hand side of Figure 3.6.

We now investigate how these numbers vary under the operations (z;,%;); for i # k € {1, 2, 3};
we apply for example (22,52)1. By Definition 3.1.2 this corresponds to introducing the claspers A
and (12)~! as shown in the right-hand side of Figure 3.6, which we then put in normal form. This is
done by sliding the 1-leaf of A along the first component to obtain (12) and simplify it with (12)7!.
By move (2) from Proposition 1.1.11, this sliding creates new claspers, but by Lemma 1.1.10, the
only claspers that do not vanish up to link-homotopy, are those created when A crosses the leaves
of (13)13: more precisely, in this process, v13 copies of {1, 2, 3}-supported claspers appear. Finally,
according to Remark 1.1.12 we can rearrange these new claspers and the normal form becomes

(12)1’12 (13)1’13 (23)1/23 (123)1’1234‘1/13‘

The other operations (#;,%;); act in a similar way, by changing v193 by a multiple of v12, 113 or ves.
Summarizing, we have shown that

V12, V13, V23 and vi23 mod ged(viz, 113, 123),

form a set of complete invariants for 3-component links up to link-homotopy.
Note that we recover here Milnor invariants fi;9, ft13, flog and fio3, that we already knew to be
complete link-homotopy invariants for 3-component links (see [Mil54]).

3.2.3 The 4-component case

Before proceeding with the link-homotopy classification of 4-component links, we need the following
technical result.

Lemma 3.2.1. Let C' be a union of simple claspers for the trivial n-component braid 1, and let
le{l, ..., n}. Let T be a clasper in C with I in its support and let Cr; = |JT" be the union of all
claspers T' in C such that supp(T”) n supp(T) = {l}. Suppose that an l-leaf f of T is disjoint from
a 3-ball B containing all l-leaves of Cr;. Then the closure of 1€ is link-homotopic to the closure of
1< where C" is obtained from C by passing f across the ball B as shown in Figure 3.7.
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Proof. First the result is clear if T has several [-leaves, since by Lemma 1.1.10, T vanishes up to
link-homotopy. By Remark 1.1.12 the edges of any clasper in Cr; can freely cross those of T" but f
and the [-leaves of claspers in C7; cannot be freely exchanged. However, according to Remark 1.1.12
again, the leaf f can be freely exchanged with any I-leaf of claspers in C\Cr, since their support
contain at least some k # [ which is in supp(7’). By using the closure we can thus slide f in the other

direction, using the closure of 1, and bypass the l-leaves of claspers in Cr; all gathered in B. 0
[ [
fla T | / T
podi poda L
S m\J S
A S Cri e / Cry
IRUY)
|

Figure 3.7: Illustration of Lemma 3.2.1

Although the assumption of Lemma 3.2.1 may seem restrictive, it turns out to be naturally satisfied
for normal forms. For instance, we have the following consequence.

Proposition 3.2.2. Let C = (aq)" - -+ (apm)"™ be the normal form of a pure homotopy n-component
braid and let (a) be a degree n—2 comb-clasper. Then C and C' = (a1)"* - - - (o) ()i (@) 7L+ ()™
have link-homotopic closures, for any i€ {1, ..., m}.

Proof. We first consider the product (ay)”t--- ()" (a)(a)™t - ()™ where we just insert the
trivial term (a)(a)™! in C. We next want to exchange («) and («;)*. This is allowed if [supp(a) N
supp(a;)| = 2 by Remark 1.1.12, but if supp(«) nsupp(a;) = {l} we can only realize crossing changes
between the edges of («) and («;)"" (see Remark 1.1.12). However in that case («;) is a comb-clasper
of support {k, I} with k the only component not in the support of («), thus we can apply Lemma
3.2.1 to the I-leaf of (), and bypass the block («;)"i (corresponding to Cp in Lemma 3.2.1). O

Let us now return to the classification of links up to link-homotopy and let L be a 4-component
link seen as the closure of the normal form:

(12)¥12(13)713 (14)¥14(23) 23 (24)¥24 (34) V3¢ (1237123 (124) 124 (134) V134 (234) 234 (1234) 1234 (1324) 1324

for some integers V12, V13, V14, V23, V24, V34, V123, V124, V134, V234, V1234, and V1324. See Figure 3.8.

We can apply Proposition 3.2.2 to the degree 2 comb-claspers (123), (124), (134) and (234). For
example, applying Proposition 3.2.2 to («) = (234) and («;) = (12), we get that L is link-homotopic
to the closure of:

(234)(12)¥12(234) 71 (13)¥13(14)"14 (23)23 (24)"21 (34) 34 (123) 128
(124)¥124(134)¥134(234)234 (1234)1234 (1324) 1324,
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Figure 3.8: Normal form for 4 components.

V123 ‘i\ K A-/i)

By clasper calculus (Proposition 1.1.11 and Remark 1.1.12), we have that (234)(12)*12(234) ! is link-
homotopic to (12)*12(1234)12. The product of claspers (1234)12 can be freely homotoped by Remark
1.1.12, thus producing the normal form

(12)V12 (13)'/13 (14)7/14 (23)1/23 (24)1/24 (34)'/34 (123)1/123 (124)1’124 (134)’/134 (234)1/234 (1234)V1234+V12 (1324)1/1324’

whose closure is link-homotopic to L. This is recorded in the first row of Table 3.1, which records all
possible transformations on clasp-numbers obtained with Proposition 3.2.2. Each row represents a
possible transformation, where the entry in the column v, represents the variation of the clasp-number
Vo. Note that an empty cell means that the corresponding clasp-number remains unchanged. Note
also that, we only need two columns because for the comb-claspers of degree 1 or 2 the associated
clasp-numbers remain unchanged.

V12
V34
13
V24
V14 -V14
V23 -123

Table 3.1: Some clasp-numbers variation with same closures.
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Let us now describe how operations (&;,%;)x for i # k in {1, ..., 4} affect clasp-numbers. As
for the 3-component case, (&;,7;); corresponds to sliding the i-leaf of a simple clasper of support
{i, j} (denoted A in Definition 3.1.2) along the i-th component. Along the way A encounters leaves
and edges of other claspers, that can be crossed as described by moves (2) and (4) from Proposition
1.1.11. In doing so, claspers of degree 2 and 3 may appear, that we must reposition in the normal
form. Those of degree 3 commute with any clasper by Remark 1.1.12, but since they may not be
comb-claspers we have to use IHX relations (Proposition 1.1.15) to turn them into comb-claspers.
Claspers of degree 2 can be repositioned using Remark 1.1.12 and Lemma 3.2.1 (the fact that Lemma
3.2.1 applies is clear according to the shape of the normal form, where factors are stacked).

We detail as an example operation (24,74)2. In that case A has support {2, 4} and we slide its
2-leaf along the 2nd component. According to Remark 1.1.12, A can freely cross the edges of claspers
with 4 in their support and the 2-leaves of claspers containing 2 and 4 in their support. Thus, we
only consider the claspers that appear when A meets the edges of (13)"!3 and the 2-leaves of (12)"12,
(23)¥23 and (123)"123. Once repositioned we obtain in order the factors (1324)"13, (124)"12, (234)"23
and (1324)7123. However according to Table 3.1, (1324)*1® can be removed up to link-homotopy and
thus we get the following normal form:

(12)”12 (13)”13 (14)1’14 (23)V23 (24)”24 (34)”34 (123)”123 (124)V124+V12
(134)1’134 (234)1’234*’/23 (1234)”1234 (1324)1’1324*7/123 .

In the same way, we compute all operations (z;,%;); and record them in Table 3.2. The entry
in row (Z;,T;); represents the corresponding variation. As in Table 3.1, an empty cell means that
(Z,%; ) does not change the clasp-number. Moreover the v columns are omitted because they remain
unchanged by any operations.

’ H V123 ‘ V124 ‘ V134 ‘ V234 ‘ V1234 ‘ V1324 ‘

1 V13 Vi4 V134
1 —V12 V14 V124
1 —lVi2 | —V13 —Ul123 V123

2 —l23 | V24 —1234
2 V12 Vo4 V124 —V124
2 V12 —123 —V123

3 || —V13 —UV34 | —V134 V134
3 V13 V23 V123

4 V24 V34 V234 —U234
4 —U14 V34 —V134
4 —Vi14 | —V24 | —V124

)
)
)
)
)
)
1,21)3 || 123 —U34 V234
)
)
)
)
)

Table 3.2: Clasp-numbers variations under operations (;,Z;)k.

There are however algebraic redundancies in Table 3.2, i.e., some lines are combinations of other
lines, which means that some operation (Z;,%;)x generate the others. So we can keep only these ones
(or their opposite), which we call ‘generating’ operations, and which we record in Table 3.3.
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’ V123 \ V124 \ V134 \ V234 \V1234 \ 1/1324\

V13 V14 V134
—V12 V14 V124
V23 Vo4 V234
—V12 V23 V123
V23 —V34 V234
V13 V23 V123
V14 —V34 V134
V14 Vo4 V124

Table 3.3: Clasp-numbers variations under generating operations.

Finally, with Table 3.3 we reinterpret the homotopy classification of 4-component links as follows.

Theorem 3.2.3. Two 4-component links, seen as closures of braids in normal forms (see Figure 3.8),
are link-homotopic if and only if their clasp-numbers are related by a sequence of transformations from
Table 5.5.

Remark 3.2.4. Table 3.1 was only used here as a tool to simplify the computations summarized in
Table 3.2. We stress that Table 3.3 alone suffices to generate Table 3.1 and Table 3.2. In particular,
Table 3.1 is obtained by ‘commuting’ the rows of Table 3.3. More precisely let us denote by [R;]y the
variation associated to the i-th row of Table k. Let us also denote by [R;,R;|x the ‘commutator of
rows i and j’ from Table k, i.e., the variation obtained by applying the i-th row of Table k, then the
j-th, then the opposite of the i-th and finally the opposite of the j-th. Thus, Table 3.3 generates the
rows of Table 3.1 as follows:

[Ri]31 = [Re,R2]33,  [Ral]z1 = [R1,Rs]33,  [R3]z.1 = [Re,Rr]3.3,
[Ra]31 = [R3,R2]33,  [Rs]31 =[R2, Ri]33,  [Relz.1 = [R5,R6]3.3.

Note that J. Levine in [Lev88] already proved a similar result. The purpose of this paragraph is
to explain the correspondence between the two approaches. The strategy adopted in [Lev88] consists
in fixing the first three components and let the fourth one carry the information of the link-homotopy
indeterminacy. J. Levine used four integers k, I, 7, d to describe a normal form for the first three
components, and integers e; with i € {1, ..., 8} to describe the information of the last component.
Finally, in [Lev88, Table3] he gives a list of all possible transformations on e;-numbers that do not
change the link-homotopy class. Fixing the last component corresponds in our setting to fixing
the clasp-number vj93: this is why [Lev88, Table 3] has one less column than Tables 3.2 and 3.3.
Moreover, the five rows of [Lev88, Table 3] correspond to (#3,73)7 ", (24,44)5 (41,71 )4, (3,43)4 and
(€1,21)5 € o (w3,23); “ 0 (fg,fg)l_b, respectively, and Levine’s integers correspond to clasp-numbers as
follows.

Vig | V13 | V23 | V123 | V14 | V24 | V34 | V124 | V134 | V234 | —V1324 | —V1234
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3.2.4 The 5-component algebraically-split case

This section is dedicated to the study of 5-components algebraically-split links. These are links such
that the linking number is zero for any pair of components. Equivalently, algebraically-split links are
given by the closure of a normal form with trivial clasp-numbers for any degree one comb-clasper.

The following proposition is the algebraically-split version of Proposition 3.2.2. The proof is
essentially the same and is left to the reader.

Proposition 3.2.5. Let C = (aq)" - (apm)"™ be a normal form of a pure homotopy n-component
braid with v; = 0 for any (a;) of degree one, and let («) be a degree n — 3 comb-clasper. Then C and
C' = (o) - (a) () (@)L - ()™ have link-homotopic closures, for anyie {1, ..., m}.

Now, let L be a 5-component algebraically-split link seen as the closure of the normal form:

C =(123)"123(124)"124 (125)"125 (134)V13¢ (135) 135 (145)¥145 (234) 234 (235) V235 (245) 245 (345) V345
(1234)71231(1235)¥1235 (1245) 1245 (1324) 1324 (1325)V1325 (1345) 1345 (1425) /1425 (14351435 (2345) V2345
(2435)72435 (12345)¥12315 (12435) V12435 (1324513245 (1342513425 (14235 ) 14235 (14325) 114325

The strategy is similar to the 4-component case. We see links as braid closures, and with Theorem
2.3.12 we know that any braid is uniquely determined up to link-homotopy by a set of clasp-numbers
{vo}. In this case, the algebraically-split condition results in the vanishing of clasp-numbers v;; (i.e.,
vo = 0 for all (a) of degree 1). Now, as mentioned by Theorem 3.1.8, the classification of links up
to link-homotopy reduces to determining how operations (z;,%;); for i # k in {1, ..., 5} affect the
clasp-numbers.

We first use Proposition 3.2.5 to simplify the upcoming computations. In that case Proposition
3.2.5 concerns degree 2 comb-claspers (123), (124), (125), (134), (135), (145), (234), (235), (245) and
(345). We record in Table 3.4 all possible transformations on clasp-numbers obtained with Proposition
3.2.5. As before, each row represents a possible transformation, where the entry in the column v,
represents the variation of the clasp-number v,, and an empty cell means that the corresponding
clasp-number remains unchanged. Note also that we only need columns corresponding to degree 4
comb-claspers because the other clasp-numbers remain unchanged.

Finally, we compute the effect of all operations (&;,%;); using Definition 3.1.2 and Table 3.4, and
simplify the results keeping only the ‘generating’ operations, as in the 4-component case. We record
the corresponding clasp-number variations in Table 3.5. As for the 4-component case, Table 3.5
contains all the data for the classification of 5-component algebraically-split links. In other words we
obtain the following classification result.

Theorem 3.2.6. Two 5-component algebraically-split links, seen as closures of braids in normal
forms, are link-homotopic if and only if their clasp-numbers are related by a sequence of transforma-
tions from Table 3.5.

Remark 3.2.7. Just as in Remark 3.2.4, only Table 3.5 is needed here as it generates Table 3.4.
With the same notations as in Remark 3.2.4 and with the additional notation ‘o’ for composition, we
get:
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’ V12345 ‘ V12435 ‘ V13245 ‘ V13425 ‘ V14235 ‘ V14325 ‘

V123
V123
V124
V124
Vi2s | —V125
V125 — V125
V134
V134
V135 —V135
Vi35 | —V135
V145 —V145
Vigs | —V145
V234 | —V234 —V234 V234
V234 | —V234 | V234 | —V234
V235
V235
V245
V245
V345
V345

Table 3.4: Some clasp-numbers variations with same closure.
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V1234 | V1235 | V1245 | V1324 | V1325 | V1345 | V1425 | V1435 | Vo345 | V2435 | V12345 V12435 V13245 V13425 V14235 V14325
V134 V135 V145 V1345 V1435
V124 V125 V145 V1245 V1425
—V123 V123 V125 V135 V1235 V1325
V234 V235 V245 V2345 V2435
Vigs | —V123 —V125 V235 V1235 V1325 —V1325 —V1235
V123 V124 V234 —Va34 V1234 + V1324 —V1234
V234 235 —V345 V2345 + V2435 —V2435
V134 V135 —V134 | —V135 V345 V1345 —V1345 V1435 —V1435
—V123 V134 V234 V1234 + V1324 —V1324
V234 —V234 V245 V345 V2345 + V2435 | —V2345
V124 V145 —V145 | Vo45 | —V245 | V1245 —V1245 V1425 —V1425
V124 V134 V234 V1234 V1324
V135 V145 —V345 V345 V1345 V1435
V125 V145 V245 V1245 V1425
V125 135 V235 V1235 V1325

Table 3.5: Clasp-numbers variations under generating operations in the 5-component algebraically-
split case.

[R1]3.4 = [R12,R3]3.5 © [R5,Re]3.5, [R2]3.4 = [Re,R5]3.5, [R3]3.4 = [R11,R12]3.5,
[R4]3.4 = [Re,R14]3.5, [R5]3.4 = [R5,R11]35 0 [R3,R11]3.5, [Re]3.4 = [R3,R11]3.5,
[R7]3.4 = [R12,R13]3.5, [Rg]3.4 = [Rs,R9]3.5, [Ro]3.4 = [R1,R5]3.5,
[Rio0]3.4 = [R13,R5]3.5, [Ri1]3.4 = [R2,R1]35, [Ri2]3.4 = [Ri3,R14]3.5,
[R13]3.4 = [Re,R4]35, [Ri4]3.4 = [R7,R9]35, [R15]3.4 = [R5,R10]3.5,
[Ri6]3.4 = [R7,R3]3.5, [Ri7]3.4 = [R4,R2]35, [Rig]3.4 = [Ri0,R11]3.5,
[Rig]3.4 = [R1,R7]35, [R20]3.4 = [R10,R1]3.5.

Note that in a recent paper [KM22], Kotorii and Mizusawa, with techniques similar to the one pre-
sented in this section, have given a complete classification of 5-component links up to link-homotopy.
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Chapter 4

Welded objects

This chapter deals with welded objects. The structure is very similar to that of Chapters 1 and 2.
First, general definitions are given in Section 4.1, including a review of arrow calculus, which is the
welded analogue of clasper calculus, developed by J.-B. Meilhan and A. Yasuhara in [MY19]. Section
4.2 is devoted to the homotopy welded braids group. We give in Theorem 4.2.11 a group presentation
inspired by that of J. Darné [Dar23]. We then extend the representation of Section 2.3 to the welded
framework. Finally, Section 4.3 takes up the elements developed in Section 2.4 from the welded point
of view. We end with the main result of this thesis, namely Theorem 4.3.8: the homotopy braid group
is torsion-free for any number of strands.

4.1 General definitions

4.1.1 Virtual diagrams

This section focuses on the study of welded tangles, a generalization of the usual tangles previously
studied.

Definition 4.1.1. An n-component virtual tangle diagram is the image of a smooth immersion
of an n-component, ordered, and oriented 1-manifold (a disjoint union of circles and intervals) in
the disk. We require the embedding to be proper, meaning that the boundary of the 1-manifold must
be sent to the boundary of the disk. Additionally, we require the singularities to consist of a finite
number of transverse double points labeled either as a classical crossing or as a virtual crossing, as

tllustrated in Figure 4.1.

N

Figure 4.1: A classical and a virtual crossing.

In what follows, we will often simply say ‘diagram’ instead of virtual tangle diagram.

Definition 4.1.2. An n-component welded tangle is the equivalence class of an n-component virtual
tangle diagram under welded isotopies given by:
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e planar isotopies,
e classical Reidemeister mowves,

e virtual Reidemeister moves, which are the exact analogues of the classical ones with all classical
crossings replaced by virtual ones,

o mized Reidemeister move, as shown on the left-hand side of Figure 4.2,

e OC moves (for overcrossings commute), as shown in the central part of Figure 4.2.
~ R
=R X
\ A
1Mz'a:ed 106’ IUC’
S <<
NI &

Figure 4.2: The Mixed, OC and UC moves on virtual diagrams.

Remark 4.1.3. Recall that there is a ‘forbidden’ local moves, called UC moves (for undercrossings
commute), illustrated on the right-hand side of Figure 4.2. Recall also that the notion of virtual
tangle arises by deleting the OC move from Definition 4.1.2 [Kau99, GPV00].

Remark 4.1.4. It is shown in [Kau99] that the set of tangles up to isotopy is injected into the set
of welded tangle up to welded isotopy. In other words, if two classical tangles are related by welded
isotopy, then they are also related by classical isotopy.

As in the context of classical knot theory, we can study the notion of link-homotopy, where
each individual component is allowed to cross itself. In the welded context, however, it turns out that
the right analogue of this relation is generated by the self-virtualization move, where a crossing
involving two strands of the same component can be replaced by a virtual one or vice versa, as
depicted in Figure 4.3 see [ABMW17a]. In what follows, we will study this equivalence relation and
call it homotopy; we use the same notation as in the classical case ‘~’ to denote this equivalence

relation.
Same / ~ ><
component ~—a \

Figure 4.3: A self-virtualization move.

4.1.2 Arrow calculus

Arrow calculus has been developed by J.-B. Meilhan and A. Yasuhara in [MY19]. It is the analogue
of claspers calculus in the welded context. In particular, it turns out to be a powerful tool to deal
with homotopy. In the following we define and recall the homotopy arrow calculus.
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Definition 4.1.5. [MY19, Definition 3.1] A w—tree for a diagram D is a connected uni-trivalent
tree T', immersed in the plane of the diagram such that

o The trivalent vertices of T are pairwise disjoint and disjoint from D.
o The univalent vertices of T' are pairwise disjoint and are contained in D\{crossings of D}.

o All edges of T are oriented, such that each trivalent vertexr has two ingoing edges and one
outgoing edge.

o We allow virtual crossings between edges of T', and between D and edges of T, but classical
crossings tnvolving T are not allowed.

e Each edge of T is assigned a number (possibly zero) of decorations, called twists, which are
disjoint from all vertices and crossings.

A w—tree with a single edge is called a w—arrow.

The unique univalent vertex with an ingoing edge is called the head of the w-tree. By graphic
convention, it is represented by an arrow on the figures. The other univalent vertices are called tails.
When we do not need to distinguish between tails and head, we simply call all univalent vertices,
endpoints. In the figures, portions of the diagram are represented by thick black lines and w-trees
edges by thin blue lines. Finally, twists are represented graphically by big red dots e.

Definition 4.1.6. Let T be a w-tree for a diagram D. We define the degree of T, denoted by
deg(T), as its number of tails. The support of T, denoted by supp(T), is defined to be the set of the
components of D that intersect the endpoints of T. The roots of T', denoted by roots(T'), is defined
to be the set of the components of D that intersect the tails of T. We will often consider the number
of the components rather than the components themselves.

Definition 4.1.7. We say that a w-tree for a diagram D has repeats if it intersects a component
of D in at least two endpoints. Otherwise, we say that the w-tree is nonrepeated.

Given a disjoint union of w-trees F' for a diagram D, there is a procedure called surgery detailed
in [MY19] to construct a new diagram denoted Dp. We illustrate on Figure 4.4 the surgery along a
w-arrow. Note that the orientation of the portion of diagram containing the tail, needs to be specified

_J

—» —»

1

Figure 4.4: Surgery on a w-arrow.

to define the surgery move. In the case where a w-arrow contains some twist, surgery introduces a
virtual crossing, as shown on the left-hand side of Figure 4.5. Moreover, if the edge of the w-arrow
intersects the diagram D, or an edge of another w-arrow, then the surgery introduces virtual crossings
as indicated on the right-hand side of Figure 4.5.
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Figure 4.5: Surgeries near a twist and crossings.

Now if F' contains some w-trees with degree higher than one, we first apply the expanding rule
shown on Figure 4.6 at each trivalent vertex: this breaks up F into a union of w-arrows, on which
we can perform surgery.

<R RS

Figure 4.6: The expanding rule.

We describe in the following the homotopy arrow calculus. It refers to the set of operations on
unions of welded tangles with some w-trees, which enable link-homotopic surgery results. These
operations are developed in [MY19], and we summarize them in the next lemmas.

Lemma 4.1.8. [MY19, Lemma 9.2 | Surgery along a repeated w-tree does not change the homotopy
class of a diagram.

Proposition 4.1.9. [MY19] We have the following homotopy equivalences.

o Arrow isotopy. Virtual Reidemeister moves involving edges of w-trees and/or strands of dia-
grams, together with the following local moves:

Y b 0 N o
A Al D %é,\,_

—

e Head/Tail Reversal. Changing the side of the strand from which an endpoint of a w-tree is
attached has the following effect.

e Inverse. Two parallel copies of a w-tree which differ only by one twist, can be deleted up to
homotopy.

'Here and in the following figures, we use the diagrammatic convention adopted in [MY19, Convention 5.1].
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Until the end of the section, T' and S will denote w-trees for a given diagram D. As for clasper
calculus, we use the notation 7" ~ S to mean that Dy ~ Dg. The next proposition describes how to
handle twists in the homotopy arrow calculus.

Proposition 4.1.10. [MY19] We have the following homotopy equivalences (illustrated in Figure
4.7).

(1) If T is obtained from S by removing two consecutive twists on an edge then T ~ S.

(2) If T is obtained from S by moving a twist across a crossing involving either an edge of a w-tree
or a strand of a diagram then T ~ S.

(8) If T is obtained from S by moving a twist across a trivalent vertex then T ~ S.

(4) If T and S are identical outside a neighborhood of trivalent vertex, and if in this neighborhood
T and S are as depicted in (4) from Figure 4.7, then T ~ S.

# T | | S T ‘ ‘ S
TI ~ | S ~J ~J
(1) (2) (2)

T\(,\,W/g ﬁ/w ZFS

(3) (4)

Figure 4.7: How to deal with twists in homotopy arrow calculus.

The following lemma describes how to exchange endpoints up to homotopy.
Lemma 4.1.11. [MY19] We have the following homotopy equivalences (illustrated in Figure 4.8).

(5) Tails exchange. If T and S have two adjacent tails and if T' v S’ is obtained from T U S by
exchanging these tails, then T U S ~T U S’.

(6) Heads exchange. If the heads of T and S are adjacent and if T' U S’ is obtained from T U S by
exchanging these heads as depicted in (6) Figure 4.8, then T U S ~T" U S" U T where T is as
shown in the figure.

(7) Head/Tail exchange. If the head of T is adjacent to a tail of S and if T" U S’ is obtained from
TS by exchanging these endpoints as depicted in (7) from Figure 4.8, thenTuS ~T'uS UT,
where T is as shown in the figure.
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Figure 4.8: How to exchange endpoints in homotopy arrow calculus.

Finally, we have an arrow calculus version of the IHX relation.

Proposition 4.1.12. [MY19, Lemma 7.1} | Let Ty, Ty, Tx be three parallel copies of a given w-tree
that coincide everywhere outside a disk, where they are as shown in Figure 4.9. Then Tru Ty uTx ~
. We say that T7, Ty and Tx verify the IHX relation.

T T T

I H X

Figure 4.9: The IHX relation for w-trees.

4.2 Welded braids

This section is dedicated to homotopy welded braids. Our approach is similar to the one followed in
Chapter 2 for classical braids. We will first define comb-trees which are the analogue of comb-claspers
in the welded case. Then we study and improve presentations of welded braid groups using arrow
calculus. We also show that the representation defined in Section 2.3 extends well in the welded
context. Finally, we return to and fully solve the torsion problem addressed in Section 2.4.

4.2.1 Comb-trees

Let us take n fixed points, in the unit interval [0,1], denoted by p1 < pa < -+ < pp,.

Definition 4.2.1. An n-component virtual braid diagram 5 = (51, ..., () is the image of a
1mmersion

(Brs -y Ba) | ][0,1] = [0,1] x [0,1]

<n

such that, for some permutation of {1, ..., n} associated to B, denoted 7(f3), we have [3;(0) = (p;, 0)
and Bi(1) = (prp)@), 1) for any i. We require the singularities to be a finite number of transverse
double points, which are labeled either as classical crossings or as virtual crossings. Additionally, we
require the immersion to be monotonic, which means that B;(t) € [0,1] x {t} for any t € [0, 1] and any
1. We call the image of B; the i-th component of 5. We say that a virtual braid diagram B is pure
if its associated permutation w(B) is the identity.
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The set of virtual braid diagrams up to welded isotopy (resp. homotopy), equipped with the
stacking operation, forms a group: the welded braid group denoted by W B,, (resp. the homotopy
welded braid group, denoted by hW B,,). Elements of hW B,, are called homotopy welded braids.
The set of pure braids up to welded isotopy (resp. homotopy) forms a subgroup of WB,, (resp.
hW B,,) denoted by W P,, (resp. hW P,;). Note that we do not require welded isotopy or homotopy to
preserve the monotonic property during the deformation. As in the classical case (Remark 2.1.5), we
will regard homotopy welded braid as welded tangles up to homotopy.

Proposition 4.2.2. [ABMW17a, Theorem 3.10] Any welded string-link is link-homotopic to a pure
welded braid, and if two pure welded braids are link-homotopic as string-links, then they also are as
braids.

We next introduce comb-trees and their associated notation. Let I = (ig, i1, ..., i;) be a sequence
of nonrepeated indices in {1, ..., n} such that i; < i; for any 2 < j <.

Definition 4.2.3. The comb-trees x; and Xl_l, are the w—trees for the trivial n—-braid diagram 1.,
shown in Figure 4.10. We say that xj is positive and that Xl_l is negative.

19 1 W 19 TR Y
| | | | léo 1] | | | > 10
| v | 1
X1 X1

Figure 4.10: The positive and negative comb-trees x; and Xfl.

In what follows, we blur the distinction between comb-trees and the result of their surgery up to
homotopy. From this point of view, a comb-tree is a pure homotopy welded braid and the product
xrxr of two comb-trees is the product 1,,1, ,.

Example 4.2.4. The two comb-trees x; and Xl_l are, up to homotopy, inverse to each other. Indeed,
consider the product X]Xfl and apply an arrow isotopy to make the two comb-trees parallel. Then
using the Inverse move from proposition 4.1.9 we delete the two w-trees. We illustrate this operation
with the comb-trees X34 and X§114 i Figure 4.11.

1 2 3 4 1 2 3 4 1

2 3 4
Y > Y l l
vy v v v’j

Figure 4.11: The product X314X??114 is trivial.

Lemma 4.2.5. Let T be a w-tree of degree l for the trivial braid 1 with head on the i-th component,
then 17 is link-homotopic to a product of comb-trees of degree | with head on the i-th component.
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Proof. First, we may use a Head Reversal from Proposition 4.1.9 to ensure that the orientation of
the head and the strand that it intersects are arranged as in Figure 4.10. Then, we may apply the
IHX relation of Lemma 4.1.12, and we may arrange the cyclic order at each trivalent vertex with
Proposition 4.1.10 to get the shape depicted in Figure 4.10 for each individual comb-tree. Next, we
may exchange endpoints using Lemma 4.1.11 to obtain the product arrangement; this creates w-trees
with repeats which are trivial up to link-homotopy by Proposition 4.1.8. Finally, with Proposition
4.1.10, we move all twists to the edge incident to the head and cancel them pairwise. O

Definition 4.2.6. We say that a pure homotopy welded braid B € hW P, given by a product of

comb-trees 3 = X;—rllxil . X;‘: is :

e stacked if x1, = x1; for some i < j implies that x1, = x1, for any i <k < j,

e reduced if it contains no redundant pair, i.e., two consecutive factors are not the inverse of each
other.

If B is reduced and stacked, then we can rewrite 3 as 8 = || X?Z for some integers v; and with x1, # X1,
for any i # j. Moreover, given any total order < on the set of positive comb-trees, we say that a
reduced and stacked writing is o normal form of 8 for this order if x5, < xy1; for all i < j.

Theorem 4.2.7. Any pure homotopy welded braid 5 € hW P,, can be expressed in a normal form, for
any order on the set of positive comb-trees.

Proof. Note that the comb-trees x;; correspond to the usual pure welded braid group generators y;;
shown in Figure 4.13 (see Remark 4.2.10). Thus it is clear that g is given by a product of degree one
comb-trees.

Now we rearrange these comb-trees according to the given order with Lemma 4.1.11. This may
introduce new w-trees of degree strictly higher than one, and by Lemma 4.2.5 we can freely assume that
these are all comb-trees. Next we consider degree two comb-trees and we rearrange them according
to the order. Again this introduces higher degree w-trees, which can all be assumed to be comb-
trees according to Lemma 4.2.5. By iterating this process degree by degree, we eventually obtain the
desired normal form. Indeed, the procedure terminates because w-trees of degree higher than n are
trivial in AW P, by Lemma 4.1.8. O

Remark 4.2.8. This result is to be compared with Theorem 9.4 of [MY19], which uses a different
notion of comb-tree, ordered according to the degree. Their method is based on the correspondence
between comb-trees and Milnor numbers. In particular, their approach also proves the unicity of the
normal form and the that Milnor numbers are complete invariants of pure homotopy welded braids.
We will also prove the unicity of the normal form later in Corollary 4.2.35 using another method.

Remark 4.2.9. Note that this result could be adapted to the whole homotopy welded braid group.
This would require extending the notion of normal form to all homotopy welded braids. This could be
done by associating a homotopy welded braid with each permutation.

4.2.2 Welded braid group presentations

In this section we use the usual Artin braid generators o; for ¢ € {1, ..., n— 1} and the usual virtual
braid generators p; for i € {1, ..., n—1} illustrated in Figure 4.12. We also use the usual pure welded

68



braid generators

Xij = { PiPi+1 "

Pi—1pPi—2 "

illustrated in Figure 4.13.

1 ) +1
v v \ v
1 1 i+1
v v v

Figure 4.12: The welded generator

Remark 4.2.10. Note that, the notation x;; is already used for degree one comb-trees from Section
4.2.1: this is because the pure welded braid generator x;; is the surgery result of the comb-tree x;; on

the trivial braid.

The (pure) homotopy welded braid group appears as a quotient of the (pure) welded braid group
of which we recall a presentation from [Dam17] in Theorem 4.2.11. The end of the section consists
in using the arrow calculus to describe some relations of the homotopy quotient in order to obtain a
presentation for the (pure) homotopy welded braid group.

Theorem 4.2.11. [Dam17, Corollary 3.15; Corollary 3.19.] A presentation? for the welded braid

group s given by:

WB, =

04,04

A presentation for the pure welded braid group is given by:

Pj—205-1P5—1P5—2 """ Pi+1Pi
T PIHIPOGPG L Pi2Pi

o; and p;.

0i0i+103 = 044+10404+1

PiPi+1Pi = Pi+1PiPi+1

[O’Z',O'j] = 1
[pip;] =1
pi=1

[Uiapj] =1

OiPi+1Pi = Pi+1Pi0i+1
Pi0i+10; = 0i410i0i+1

1 )

L

if1<i<j<n,
ifl<j<i<n,

1 J
I

.
v rw

ifli—jl > 1

ifli—jl>1

if i —j] > 1

oo
v A

Figure 4.13: The pure welded generator ;.

forl<i<n-—1

forl<i<n-—1
forl<i<n

fori<i<n-—1
forl<i<n-—1

[Xijxw] =1 if {1} 0 {k1} = &
WPy =(xij | [Xik, xjx] =1 for any i.j.k
XikXje-Xi) =1 for any i,j.k
2Here and in the following presentation, generators o; and p; are indexed by integers i € {1, ..., n—1}, and generators

Xi; are indexed by pairs of integers i # j € {1, ..., n —1}.




In order to get a presentation for the pure homotopy welded braid group, let us first state a
preparatory technical lemma.

Lemma 4.2.12. For any 1 <i # k < n and any w € hW P, the conjugate wy;rw ™" is obtained as

the surgery on a product of nonrepeated w-trees for the trivial braid, all containing ¢ and k in their
support and having a tail on the k-th component.

Proof. Firstly, if T1 and T5 are two w-trees for the trivial braid 1 such that |supp(7}) nsupp(72)| = 2
then their endpoints can be freely exchanged and T7; commutes with T5. Indeed, exchanging two tails
is always possible according to move (5) from Lemma 4.1.11, and if one of the two endpoints is a head
then by move (6) or (7) from Lemma 4.1.11 the exchange creates a new w-tree. However, thanks
to the condition on the supports, this w-tree has repeats and is therefore trivial up to homotopy as
shown by Lemma 4.1.8. Observe also that 77 and T5 commute if they have disjoint support, or if the
endpoints on supp(71) n supp(7s) are all tails, by move (5) of Lemma 4.1.11.

The only remaining case is thus that of two w-trees T} and T with supp(77) n supp(T2) = {i} for
some i, and such that the i-th component contains the head of 77 or T5. Then commuting 77 and 75 is
achieved by exchanging their endpoints lying on the i-th component. By doing so, as shown by move
(6) or (7) from Lemma 4.1.11, this creates a new w-tree T3 such that supp(73) = supp(71) usupp(Ts)
and roots(T3) = roots(11) u roots(T:). This w-tree has then at least two endpoints in common with
Ty and Tb, thus it can be moved freely and we get T1T> = T5ToTy = ToT5Ty =TT Ts.

The observations above imply that, if F' is a product of w-trees all containing ¢ and k in their
support and having a tail on the k-th component, then for any w-tree W the conjugate WFW !
is again a product of w-trees all containing ¢ and % in their support and having a tail on the k-th
component.

Finally we express w € hW P, as a product of w-trees w = Wy, --- Wy. Then, since y;; contains 4
and k in its support and has a tail on the k-th component, the conjugate F := Wox;, Wy lis again a
product of w-trees all containing ¢ and k in their support and having a tail on the k-th component.
Therefore, by taking successive conjugates Fy 1 := Wi F W~ ! we eventually conclude the proof. [

The two following propositions give us relations in the pure homotopy welded braid group.

Proposition 4.2.13. For any pairwise distinct 1 <4, j, k < n, and any w € KWW P, x;r commutes
1

with wyEpwW™ .
Proof. Let us denote by W a product of w-trees for the trivial braid 1 with surgery result wy;rw™". To
prove the proposition we consider the product x W, and perform endpoints exchanges to move x;;
down across W. To do so, we first slide the tail of xj; along the k-th component. Thanks to Lemma
4.2.12, all the factors of W have only a tail on the k-th component, so using move (5) from Lemma
4.1.11 we can achieve this sliding freely. Next, we slide the head of x;x along the j-th component.
We use moves (6) and (7) from Lemma 4.1.11 to cross endpoints of w-trees in W that we encounter
along the sliding. This creates w-trees with repeats (they intersect the k-th component in two points),
which are trivial up to homotopy by Lemma 4.1.8. O

Proposition 4.2.14. For any 1 <i # k <n and any w € W P,,, xii commutes with wyirw *.

Proof. Let us denote by W a product of w-trees for the trivial braid 1 with surgery result wy;pw™!.

According to Lemma 4.2.12 all factors of W contains ¢ and k in their support. In particular, when
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we use Lemma 4.1.11 to exchange endpoints of those factors with endpoints of xg;, we create w-trees
with repeats, which are trivial up to homotopy by Lemma 4.1.8. O

Theorem 4.2.15. We have the following presentation for the homotopy welded braid group.

[Xiijkl] =1 Zf {7“7]} N {kvl} = @
AW P, = xij | [XijoXie] = [XikoXis] for any i, j, k
[Xjk,wxikw_l] = [Xk,;,wxikw_l] =1 for any 1, j, k and any word w

Proof. In [Dar23, Theorem 5.8.], a presentation for the pure homotopy welded braid group is given
from the group presentation of Theorem 4.2.11, by adding relations of the form
[xjewxiww ™| = [xeiwxiww™ ] =1,

for certain indices ¢, j, k, and for certain w € hW P,. Our observation is that, such relations are
true for all indices 4, j, k and all w € hW P,, as stated in Proposition 4.2.13 and Proposition 4.2.14.
We conclude the proof, by showing that the relations [x;xx;k.Xxi;] = 1 and [xij,X k] = [XikXi;] are
equivalent in AW P,:

[XikXjksXij] = 1,

[xiksXis ] DGroxis] = 1,
[Xij7Xjk] = [Xz‘kinj]-

= XikXGkXii X Xon Xij = 1

= XikakXini_klx;klxi—jl =1, by commuting Xj_kl with Xz'_kl

e XikakXinﬁ}Xglxz'jx;klxi_jl =1,

. XikXini_’flXi_jlxijinj_klxi_jl =1, by commuting x;x with Xl-jxi—klxi—jl
d

d

O]

Corollary 4.2.16. A presentation for the homotopy welded braid group hW B,, is given by adding
the relations

[Xkwxinw ™| = [xiwxaw ] =1,
for any i, 7, k, and any w € hW P,, to the presentation of the welded braid group in Theorem 4.2.11.

Proof. The proof follows from Theorem 4.2.15, and the fact that, if a welded braid is trivial up to
homotopy then it belongs to the pure welded braid group hW P,. O

Remark 4.2.17. We give here, in Theorem 4.2.15 and Corollary 4.2.16, infinite presentations. How-
ever, as in the classical framework (see Remarks 2.2.3 and 2.2.7), we can reduce them to finite pre-
sentations using Proposition 1.2.5 and Corollary 1.2.6.

4.2.3 A linear faithful representation of the homotopy welded braid group

In this section, we extend the construction of the representation v of Section 2.3 to the framework of
the homotopy welded braid group. As a result, the construction of this section is very similar to that
of Section 2.3. To avoid being too redundant, we will go a little faster and omit some proofs when we
consider them too identical to those of Section 2.3.
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4.2.3.1 Algebraic definition

Let us first recall some algebraic ingredients from Section 1.2. First, we need the reduced free group
REF, from Definition 1.2.1. It is the quotient of the free group in which the generators z; commute
with their conjugates. We showed in Theorem 1.2.10 that any element w € RF), has a unique normal
form, i.e., there exists a unique ordered set of integers {e1, ..., e} associated to the ordered family
of commutators F = {[a1], [a2], ..., [am]} such that we have a unique writing

w =[] ae]? - - o]

Recall that the elements [a] € F are given for a sequence of indices a = (iy,i2, - ,i;), by the following
expression:

[a] = [[ o [[‘rinxb]axi?,]? T >xiz_1]7xiz] € REy.

Finally, in Definition 1.2.13, we defined the Z-module V generated by the formal commutators
{aq, ag, -+, ayy} associated to the family F. We also defined the linearization map ¢ : RF,, — V
given on an ordered normal form by:

O([aa][aa]® - [oun]™™) = ern + 202 + -+ + €maun.

In order to define a linear representation of the homotopy welded braid group, we need the
homotopy welded Artin representation.

Definition 4.2.18. We call welded Artin representation the homomorphism denoted by ( :
W B,, — Aut(F,) and defined as follows:

T = Ty,
C(03) 13 mis1 — a5 @iTis,
Tk — T if k¢ {i, 1+ 1},
and,
xl ad xi-‘rl;
C(pi) : {4 mig1 —

T — Tk ifk¢{i,i+1}.

Similarly, the homomorphism
Ch - hWW By, — Aut(RF,)

defined by the same expressions is called the homotopy welded Artin representation.

The fact that the homotopy welded Artin representation is well-defined is discussed in [Dah62];
see also [Wat72, FRR97]. The fact that the homotopic version of this representation, it is shown in
[ABMW17a, Section 4.4.1] that it is well-defined.

Theorem 4.2.19. Let GL(V) be the general linear group of the Z-module V. The map
Y : AW By, — GL(V)

defined for B € hWW B, and [a] € F by v, (8)(a) = ¢ o Gu(B)([ex]) is a well-defined homomorphism.
Moreover, vy, does not depend on the chosen order on F.
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The proof of Theorem 4.2.19 is strictly similar to that of Proposition 2.3.2. It is based on Lemma
4.2.20, which is the welded analogue of Lemma 2.3.1, and which is proved in the same way.

Lemma 4.2.20. Let us denote by N; the subgroup normally generated by x; in RF, forj e {1, ..., n}.
Let 8 € hW B, be a homotopy welded braid with associated permutation 7(f3), and let C € N; be a
commutator. If the product [aq]® - - [am]®™ is the normal form of n(8)(C) then we have that e; = 0

if [0i] & Namao)()-

Remark 4.2.21. We mention that, like the representation vy, the homomorphism -y, s injective.
This can be shown using the injectivity of ¢ and (p, (see [ABMW17a, Proposition 2.33]). However, in
the next Section 4.2.5.4, we will give another proof of this result using arrow calculus. This is stated
in Theorem 4.2.34, which in turn reproves the injectivity of (. Furthermore, our approach by arrow
calculus will allow explicit computations of the representation in Section 4.2.3.3.

Remark 4.2.22. The representation theory of welded braid groups is a new and rich field of re-
search: so far, few other representations are known, and the focus is mainly on extending Burau’s
representation, see for instance [KMRW17, PS22, DMR23].

In the following proposition, we prove the well-know fact that the natural inclusion of hB, in
hW B,, is injective.

Proposition 4.2.23. The homotopy braid group hB, injects into the homotopy welded braid group
hW B,, as follows:
t : hB, — hWB,

g; = ag;

Proof. Let us take 8 € hB,, in the kernel of ¢, then v, o «(8) = 7,,(1). Moreover, we see from the
definition that the image ~y(o;) of o; € hB, by the representation 7 defined in Section 2.3, coincides
with the image 7, (0;) of 0; € hWB, for any 1 < i < n. In particular we obtain the equality
Yw ©t(B) = v(B) = Id. Finally, using the injectivity of v from Theorem 2.3.11, we get that 5 = 1 and
the proof is complete. O

Remark 4.2.24. From this proof, we can freely regard the representation ~ of Section 2.3, as the
restriction of v, to hB,, seen as a subgroup of hW B,,.

4.2.3.2 Arrow interpretation

We first give an interpretation of the welded Artin (resp. homotopy welded Artin) representation
in terms of arrow calculus. As in the classical case, we first add a new strand to the right of the
braid and we label it by ‘c0’. Then we give in the following lemma a diagrammatic interpretation of
the free group F,, (resp. reduced free group RF,) on which WB,, (resp. hW B,,) acts. To do so we
introduce the pure generator xo; for 1 < i < n shown in Figure 4.14. This generator xs; can be
reinterpreted in terms of arrows as depicted in the same figure. There and in subsequent figures, we
simply represent a small part of the co component on which the arrow head is located.

Lemma 4.2.25. The family {Xw,i = pnpPn—1-""Pi+1PiTiPi+1 " " Pn—1Pn}1<i<n S€en as pure welded
braids in W Bp41 (resp. homotopy welded braid in hW By,4+1) generate a free group (resp. reduced free

group).
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2 1 n-1n

> H-

Figure 4.14: The pure generator X« ; and its arrow interpretation.

v v

Proof. We only provide the proof in the homotopy setting, since this is the version that we will use
afterwards. Note, however, that the proof is very similar in the non-homotopic case. We first use the
homotopy welded Artin representation to reinterpret the x; as automorphisms of the reduced free
group generated by x1, ..., Tn, To as follows:

-1
N_ ) Too /> T, TooTi,
Ch(Xeo,i) { Tp — Tk ifk<n

In particular, for any element Xo i, - - * Xoo,in, € {Xo0,i)1<i<n We have:
COXonsin =+ Xomim ) (Te) = 3, o & oy = Ty

with z;, # 2o € RF,41 for any 1 < k < m. Therefore, if a relation xu, - X, = 1 holds in
(Xw,i)1<i<n, then the relation x;, ---z;,, = 1 must also hold in RF,, 1. However, RF,, ;1 only admits
reduced-type relations (i.e., of the form [z;,Ax;A~!] = 1 for any i and any A € RF,), thus the only
possible relations in (xe.i)1<i<n must be of reduced-type as well. But we have seen in Theorem
4.2.15 that the generators xo; indeed satisfy all reduced-type relations [Yoi,wXo iw '] = 1 for any
1 <i<nandany we (Xew,i)i<i<n- d

In this context, the automorphism ((3) (resp. (n(53)) associated to an element 5 in W B,, (resp.
hW By,) is given on a generator xo; in F, (resp. in RF),) by considering the conjugation onwﬂ_l
illustrated in Figure 4.15. Then we re-express this element as a product of w-trees with heads on the

1 7 n 1 1 n

ﬁ 1
v v v * ‘ *

Figure 4.15: Arrow interpretation of the welded Artin representation.

co-strand, which we are able to reinterpret as elements of F,, or RF,,. This fact is explicitly stated in
the following lemma in the homotopic framework.

Lemma 4.2.26. We have the following equalities in hW B, 11:

Xooi+1 U k=1,
PiXwokPi = Xooji if k=1i+1,
Xoo,k otherwise,
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and,

Xo0,i+1 lfk; = Zla
-1 ~1 . .
OiXoo k0 = Xopit1XowiXooi+l U k=1+1,
Xoo,k otherwise.

Proof. We compute p;xo kpi using arrow calculus. If k ¢ {i,i + 1}, the equality is clear since xo
commutes with p; up to virtual isotopy. If k = ¢ (resp. k = i + 1) we slide the tail of x; (resp.
Xoo,i+1) through p;, obtaining o i+1 (resp. Xeoi), and then simplify the two virtual associated with
P
Next, we turn our attention to the classical generators o;, and we compute o;xw k0, ! Again, when
k ¢ {i,i + 1} we have that xo ; commutes with o; and the equality is clear. If k = i, we rewrite the
conjugate as

UiXoo,io'i_l = UiP?Xoo7¢P?051 = Xi,i+1Xao,i+1X{il+p
where the second equality use the equality proved just above and the following o;p; = Xx;i+1. Thanks
to the tails exchange move from Lemma 4.1.11, x;;+1 and X,i+1 commute and we have the desired
equality. For the last case, if k = ¢ + 1, applying the same trick transforms the conjugate into:

-1 -1
O0iXo0,i+10; = = Xi,i+1X00,iX; 41"

This yields a new conjugate, illustrated on the left side of Figure 4.16. Finally, we conclude using a
slide move from [MY19, Section 4.3] to transform this conjugate into Xo_o}z' 1 Xw,iXw,i+1, as depicted

on the right-hand side of Figure 4.16. O
1 v i+l n 1 v i+l n
©->] 00
< I Slide move ‘ I

1
00 Joo
1 —
Joo
v v v v

Figure 4.16: Slide move between Xi,i+1Xoo,iXZ}+1 and X;o}iHXoo,iXoo,iJrL

Therefore, as in the classical case, we have an explicit 3-steps procedure to compute v, (3)(«a) for
any 8 € hW B, and any a € V:

Step 1 Consider the conjugate of the w-tree xo o by the braid 8 (see Figure 4.15).

Step 2 Use arrow calculus to re-express this conjugate as an ordered union of comb-trees of the form
Xoo,or (the order comes from the order on F).

Step 3 The number of parallel copies of a given comb-tree in this product is the coefficient of the
associated commutator in v, (5)(«).

In the proof of Theorem 4.2.28 below, we will use explicitly this procedure to compute the represen-
tation.

Let us give first, in the following proposition, a correspondence between the family of commutators
F and comb-trees of the form xo ;.
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Proposition 4.2.27. Let i1, i2, ..., i; be a sequence of nonrepeated indices such that i1 < i; for any
J <. We have the following relation up to homotopy:

X0,i1,..ip ™ [Xoc,il,...,il_pXoo,il] X00,i1,..yi1—1 * X00yig (Xoo,il,...,z‘l_l)_l : (Xoo,il)_l

For example in Figure 4.17 we illustrate the equ1valence Xoo1324 ~ [Xo0132,Xo04]-

1 2 3 4 5 1 2 3 4 5
y =OO
Joo
1
4 N oo ~v ~< 5]
Oéloo
v v v v v v v v v v

Figure 4.17: The w-tree Xxo1324 is link-homotopic to the commutator [xu132,Xo04]-
Proof. Consider the product of w-trees Xe;,....i; , * Xoosi, - (Xoo,i1,...,il_1)_1 : (Xoo,il)_1 (as for example
on the right-hand side of Figure 4.17). First, we use move (6) from Lemma 4.1.11 to exchange the
heads of Xw,i,..5, , and Xew,,; this move creates an extra w-tree, which is exactly Xew;,..;,- Now
using arrow isotopies and the inverse move from Proposition 4.1.9 we get:

. ) ) . -1 )1 . )
X00,i1,..55 " X0y~ X001 ,0i—1 (XOO,ZL---M—J ' (XOOM) ~ X00,i1,..001
]

By using this proposition iteratively, we obtain a correspondence between the commutators [a] € F
(or v € V) and the w-trees xo,o. For example the homotopy equivalence

Xoo1324 ~ [[[Xoo1:X003]:Xo02],Xo04]
corresponds to [1324] = [[[z1,23],x2],24] in RE,.

4.2.3.3 Explicit Computations

In Theorem 2.3.5, we computed the representation + on the Artin generators o;; This readily provides
the computation of v,, (0;) by Remark 4.2.24. In order to describe the representation 7,,, it thus
remains to compute its image on the virtual generators p;. This is done in the next theorem using the
above procedure. As in Theorem 2.3.5, the images of a commutator (i1,ig, - - i) := ¢([i1,i2, - ,i]) €
V by the maps v, (0;) and 7, (pi), depend on the position of the indices i and i + 1 in the sequence
i1, 12, .., 1.

Theorem 4.2.28. For suitable sequences I, J, K in {1, ..., n}\{i, i + 1}, I # &, we have:

C ) - ) (a)

(J,i,K) — (Ji+1,K) (b)

(i +1,K) —  (i,K) + (i,i + 1,K) (¢)

(o) 4 (Li+ LK) = (LiK)+ (Lii+ 1,K) — (Li + 1,i,K) (d)

(I, Ji+1,K) — (Li+1,Ji,K) (e)

(Li+ LJi,K) — (LiJi+1,K) (f)

\ <i7J7'i + 17K) - ZJ’QJ(_ )‘J |+1(i777i + 17J\J/7K) (Q)
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and

( (1) = (I) (h)
(J,i,K) —  (Ji+1,K) (i)
(o) : 1 (Ji+ 1,K) > (Ji,K) ()
WP (Lidi+ LK) = (Ii+1,J4,K) (k)
(Ii+1,Ji,K) — (I,iJi+1,K) (1)
( (i + LK) = Y e, (-D)PHGT G+ LA K)  (m)

where in (g) and (m), the sum is over all (possibly empty) subsequences J' of J, and J' denotes the
sequence obtained from J' by reversing the order of its elements, see Example 4.2.29.

Example 4.2.29. If J = (j1, j2, j3) and K = & in (g) or (m), then v, (0;) and 7, (pi) both map
(i,J,0 +1) to :

—(Z,Z =+ 17j17j27j3) + (iajlai + 17j2aj3) + (i7j27i + 17j1aj3) + (iaj3ai + 17j17j2)

—(1,J2.5150 + 1,J3) — (i.53.01,8 + Lj2) — (4.43.02,8 + Lj1) + (4.73.52.51,0 + 1).
The proof below explains how this follows from the IHX relations of Figure 4.20.

Proof of Theorem 4.2.28. As already observed, the former half of the statement, expressing 7, (o),
readily follows from Theorem 2.3.5. Hence we focus here on computing 7, (p;). Following the pro-
cedure given above, we consider the conjugate p;Xo,ap; L and apply arrow calculus to turn it into a
union of w-trees with heads on the co-th component.

For (h) it is clear that xo ; commutes with p; by arrow isotopy, since i, ¢ + 1 ¢ supp(Xoo,1)-
The computations of (i), (), (k) and (1) are given by an isotopy interchanging the i-th and i + 1-th
component, as shown for example in Figure 4.18 in the case (i).

) i+1 { 1+1

X o0, J,i, K X oo, Ji+1,K

v v
Figure 4.18: Computation of (i).

For (m), the first step is illustrated in Figure 4.19: we apply the previous isotopy followed by move
(4) from Proposition 4.1.10, turning p;Xew,i,J,i+1,K0; Uinto a new w-tree, which is not a comb-tree.
In a second step, we use the IHX relation from Proposition 4.1.12 repeatedly to turn this new w-tree
into a product of comb-trees. This is illustrated in Figure 4.20 where J = (j1,j2,73), as in example
4.2.29; we conclude by simplifying the twists with Proposition 4.1.10 O

Example 4.2.30. We illustrate Theorem 4.2.28 on the 3-component homotopy welded braid group
hW Bs. To do so, we set (1), (2), (3), (12), (13), (23), (123), (132) to be the generators of V, with
the order of Definition 1.2.8. We already computed in Example 2.5.7 the automorphisms vy(o1) and
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141 e A

Xoo,iJi+1,K s J
J

v v v v

Figure 4.19: Turning pixooyi,inH,Kpi_l into a new w-tree.

i+1 Ji

i+l g i+l g
J2 . ) J2
I3 I3

X < ¥ U
i+ i+l g i+l q R S
i j J2 I3 J2 : j 73 73 : j J2 J3 )2 : j
s R} s R s R s R}

i+l g1 g g5 gioitl ga g FER S N T2 T PR TR 2w S PR P & o S PR PR E R o S O ES PR o S PR o S £ PO

Figure 4.20: Iterated IHX relations.
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v(o2), which coincide with ~y,, (o1) and 7y, (c2) as mentioned by Remark 4.2.24. We compute here ,,
on the virtual generators p1, pa2:

Tw (p1)(1) = (2), Tw (p2)(1) = (1),
T (p1)(2) = (1), Tw (p2)(2) = (3),
fyw(pl)(3) = (3), Tw (;02)(3) = (2)7
Tw (p1)(12) = —(12), Tw (p2)(12) = (13),
Tw (p1)(13) = (23), Tw (p2)(13) = (12),
Tw (pl)(23) = (13)7 Tw (p2)(23) = _(23)5
T (p1)(123) = —(123), T (p2)(123) = (132),
T (p1)(132) = —(123) + (132), 7y, (p2)(132) = (123).
This gives us the following matrices:
01 0| 0O0O0 0 0 10 000010 O
1 00/ 000 00 001, 000100
001|000 0 0 01 0j0O0O0]|0O0
000 -1 00 0O 0 0 0j]0O1 010 O
W) =1o 00l 0 01 oo [ WP =19 0010 000
0000 10| 0O 00 0|00 —-1|0 O
000, 0O0O0C|]-1 -1 0 0 0] 0 O0O0|01
000[0O0O0]O0 1 000 00O0( 1O
Given the similarities between these matrices and those for v(o;) = 7, (0;) given in example

4.2.30, it is not surprising to have the following analogue of Proposition 2.3.8 and Remark 2.3.9 in
the welded case. The proof are omited since they are strictly similar to those given in Section 2.3.

Proposition 4.2.31. For € hW B,, a homotopy welded braid, the matriz associated to v, (B) in
the basis of V, endowed with the order resulting from Definition 1.2.8, is given by a lower triangular
block matriz of the following form:

Bi, 0o ... 0
Bs1 Bap --- 0
Bn 1 Bn,2 e Bn n

) )

where B; ; is a finite order matriz of size rk(V;) = 2?:11 (k+'+1)' which is the identity when B is pure.
Moreover, By is the matriz of the left action by permutation k — 7= 1(B)(k), and Bas is the matriz
of the left action on the set {(k, j)}r<; given by:

(k j)H{ (1 B)(Ek), 7 HB) () i 7 LB (k) < 7 (B)(),
’ —(@1B)G), 7 B)(R) i 7N (B)G) < 7 (B) (k).

Remark 4.2.32. By the same argument as in Remark 2.3.9, the image ,, (8)(k) on all weight 1
commutators (k), is encoded in the blocks B;1 given in the first n columns, and these blocks thus
completely determine vy, (3). Additionally, the blocks Bi,i are entirely determined by the permutation
7(B) associated with the braid € hW B,,.
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4.2.3.4 Injectivity

We conclude by showing the injectivity of the representation v,, and the unicity of the normal form.
As a preparatory step, let us first compute the image by =, of a braid given by the surgery result of
a comb-tree.

Lemma 4.2.33. Letige {1, ..., n} and let J = (i1, i2, ..., ix) be a sequence of non-repeated indices
in {1,--- mP\{io}, such that iy < i; for alll < k. Let also i be any index in {1, ..., n}. The image
of the comb-tree xi,; by the representation v,,, applied to the commutator (i) € V, is given by the
following:
(i) if io # i,
Tw (XioJ)(i) = (20) — (J,’io) Zf 90 =1 and 11 < ’io,
(i()) + (io,J) +S ifig =1 and ig < iy,

with S a linear combination of commutators in V of the form (z’o,z’T(l), e ,iT(k)), for some permuta-
tions T such that iy # i1 = min(J).

In Figure 4.21 we illustrate the relation 7 (x4135)(4) = (4) — (1354).

1 2 3

4 5
/=

4 5

J oo
o~ /I I
N —< o>|oo

i
vy v w»r l l vy v
(4)

Figure 4.21: The relation 7(xa135)(4) = (4) — (1354).

In Figure 4.22 we illustrate the relation v(x245)(2) = (2) + (245) — (254).

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
o~ / ~J A A s
v v v v v v v v v v v v

Figure 4.22: The relation v(x245)(2) = (2) + (245) — (254).

Proof. Following the 3-steps procedure of section 4.2.3.2, we consider the product X;y.sXaoi, Xz_ob and
re-express it with only comb-trees whose head is on the co-th component. To do this, we want to
commute X;,7 and Xo;;, then simplify x;,; and X;ﬂb using the inverse move from Proposition 4.1.9.
To commute x;,7 and Xoi;, we may need Lemma 4.1.11 to exchange the tail of x;,; with an endpoint
of xi,s. This can be achieved for free if the head of x;,s is not on the ix-th component, i.e., if 79 # .
Otherwise, we apply a Head/Tail exchange (move (7)), which creates an extra w-tree (see Figures
4.21 and 4.22 for examples). If iy < ig, this new w-tree is exactly the comb-tree Xo_o%]io' If ip < i1,
we have to apply the IHX relation from Proposition 4.1.12 repeatedly to turn it into a product of
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comb-trees of the form Xo0igin(1)-ir (k) for some permutation 7. Note that, in the process, the only

factor Xovigi, ;)i ) Satisfying 7(1) =1 is the comb-tree XovigJ - O

Theorem 4.2.34. The representation v, : KWW B, — GL(V) is injective.

Proof. We take S € ker(v,, ), which is pure according to Proposition 4.2.31; otherwise the block Bj ;
is not the identity. Then, we consider a normal form for S using Theorem 4.2.7:

p=11x7

The rest of the proof follows the same strategy as in Theorem 2.3.11. However, this time we use
another sub-representation adapted to the welded case. Consider PV, the subspace of V spanned by

i<k
commutators of weight less than or equal to k. We can define the associated projection py : V — PV,
i<k
and its composition with the restriction of v, to @V, denoted by i := px 0 v, ® v, - Thanks to
i<k i<k

Proposition 4.2.31, v is a representation with matrices given by the rows and columns corresponding
to the blocks By s for s < k. Moreover i (xir) = Id for any comb-tree x;; with deg(x;r) > k. Hence
we have v,(8) = 1 (8’) for 8’ defined by:

/ v;
gr= 11 v
deg(xi7)<k

Now we show by strong induction on the degree k of y;; that v;; = 0. For the base case k = 1,
we take ig € {1, ..., n}. Then using Lemma 4.2.33 iteratively and the fact that vi(x;r) = Id if
deg(x:r) > 1, we obtain:

Y1(8)(i0) = m < 1 X?}j> (i0) = (i0) = Y. Vigir - (ivi0) + Y. Vigiy - (i0i1)-
1<i#j<n 11 <ig 10<i1

Since S € ker(7y), we have that 1 (5)(ig) = (i9), and this implies that v;,;, = 0 for any i; € {1, ..., n}.
To prove that v;; = 0 for any x;; of degree k we use the strong induction hypothesis, we get then:

g= 11 xv= 1] xv-

deg(xig)<k deg(xig)=k

Thus thanks to Lemma 4.2.33 again and the fact that vx(x;r) = Id if deg(x;r) > k, we finally obtain
for all ig € {1, ..., n} that:

wBGo)=w | ] x5 |Go)=Go)— D, wis-(Jio)+ Y, wigslio]) + 5,

deg(xis)=k J=(i1,0ik) J=(i1,0k)
11 <to 10<t1
t1=min(J)
where S is a sum of commutators of the form (ig,iy,- - ,ig) with 41 # min{iy,...,ix}. So in particular

no commutator in S occurs in the two above sums. Now, since 3 € ker(~y) we have that vx(5)(ig) = (io).

3Roughly speaking, this term arises by ‘tacking the term Ty’ in each occurrence of the IHX relation, see Figure 4.9.
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Thus considering the terms of the first sum we have that v;,; = 0 for any J = (i, ..., i) such that

i1 < ip. Moreover, considering the second sum, we have that v;,; = 0 for any J = (i1, ..., i) such
that i9 < 41. Finally v;;7 = 0 for any x;; of degree k which concludes the induction and completes the
proof. O

Corollary 4.2.35. The normal form is unique in hWW By, i.e., if B = [[x;7 = ]_[X;/}J are two
normal forms of 5 for a given order on the set of positive comb-trees, then v;; = v}, for any integer
i and any sequence J.

Proof. Recall that for a given integer £, the sub-representation 7, from the previous proof satisfies
Y6(B) = v (8') for 5 defined by:

= T x= [

deg(x:7)<k deg(xig)<k

As in the proof of Theorem 4.2.34, we proceed by strong induction on the degree that v;; = v, the
base case being strictly similar. For the inductive step, note that by Proposition 4.1.11, a comb-tree
of degree k commutes with any comb-tree up to higher degree w-trees. Hence if ;7 is a comb-tree of
degree k then i (x;s) commutes with v (x7) for any comb-trees x;. In particular we get:

(8" (o) =k [T X% |ow [T X |Go)

deg(xig)<k deg(xis)=Fk
v v .
=Yk H X | ok H X7 | (o).
deg(xig)<k deg(xis)=k

By induction hypothesis v;; = v/, for all x;; such that deg(x;s) < k. Hence, multiplying by the

inverse of v < [T X7 | we obtain the equality:
deg(x”)<k

Vi [T X% | Go) = [T x5 |Go)

deg(xi7)=k deg(xig)=k

Finally, with Lemma 4.2.33 we obtain:

(io)— >, wigs-(Jio)+ D, wigs(iod)+ S =(io)— >, Vi (Jio)+ D, vse])+S,

J=i1,... ik J=i1,... ik J=i1 00yl J=i1 00yl
11 <10 10<t1 11 <%0 10<t1
i1 =min(J) t1=min(J)
where S and S’ are sums of commutators of the form (ig,i1,- - ,ix) with 41 # min{iy,... ix}. In

particular, they are distinct from the commutators in the other sums. Therefore, we deduce from the
above equality that v;; = I/l{ ; for all x;; such that deg(x;s) = k, which concludes the induction as
well as the proof. ]
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4.3 The torsion problem revisited

In this section, the torsion problem in the homotopy braid group hB, is addressed again. But the
welded context (in which the classical braids are embedded) provides a better understanding of the
torsion. Following the reasoning in Section 2.4, along with welded techniques, we will eventually show
the absence of torsion in hB,, for all n (Theorem 4.3.8).

As a first result we can already state the welded analogue of Theorem 2.4.16.

Theorem 4.3.1. The pure homotopy welded braid group hW P, is torsion-free for any n € N.

Proof. The proof follows from the global shape predicted by Proposition 4.2.31 of the matrix corre-
sponding to the image 7,, () of any # € hW P, by the representation v,,. It is a lower triangular
matrix which contains a diagonal of 1’s, and therefore satisfies v, (#)"™ = Id for some integer m if and
only if v, (f) = Id. Finally, by Theorem 4.2.34, the injectivity of +,, implies that if §™ = 1 for some
pure homotopy welded braid € and some integer m then 6 = 1. ]

Remark 4.3.2. It is well known to the experts that hW P, is torsion-free. This can indeed also be
shown using the additivity of Milnor numbers.

Let us set A\, € hW B,, the homotopy welded braid, illustrated in Figure 4.23, given by

An = p1p2° " Pn—1-

We denote by 7, the cycle (n n —1 --- 2 1) = w(\,) associated to A,. When the value of n is clear
from the context, it will be omitted in the notation.

1 2 3 n—2 n—1n

Figure 4.23: The homotopy welded braid A,.

Lemma 4.3.3. Letie {1, ..., n} and let I be a sequence of non-repeated indices in {1, ..., n}\{i}.
Suppose further that x;1 is a comb-tree of degree d. Then, the conjugate \x;; A~ is link-homotopic to
a product of degree d comb-trees, all having their head on the component 7=1(4).

Proof. We first use an arrow isotopy to slide y;; through A and then simplify A\ with A~ with a
welded isotopy. This turns ;s into a new w-tree of degree d with head on component 7-!(i). Then
using Lemma 4.2.5 we turn it, up to homotopy, into a product of degree k comb-trees all having their
head on the component 771(7). O

Lemma 4.3.4. Let § € hW By, be a homotopy welded braid, whose associated permutation is an n-
cycle. Then B is conjugate to the product OX with a pure homotopy welded braid 8 € hW P, whose

normal form
0 = H X7

contains only comb-trees with head on the n-th component.
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Proof. Up to conjugation, we can suppose that m(8) = 7. Then § = 6A with § = SA~! a pure
homotopy welded braid with normal form given by:

v V2

GZXAXIQ”'X?:' (4.1)

Let us assume that v; # 0 for some xj, whose head is not on the n-th component. Let us further
suppose that yz, is of minimal degree, i.e., the head of all comb-trees of degree smaller than deg(xr,)
are on the n-th component. By Lemma 4.3.3 there exists some integer [ > 0, such that the conjugate
M (x Ii))\*l is link-homotopic to a product of comb-trees with head on the n-th component and with
same degree as xy,. We consider /', the conjugate of /5 given by:

-1
B = < 11 A’fxy;x’f> 5( 11 A’“xz%‘xk),

0<k<l 0<k<l

-1
( H A’fxy;x’f> e( H A’“X;;A—k> A\,

0<k<l 0<k<l

-1
( I1 AkXZ?A’“> Xh”i&( I1 /\kxﬁ)\’“) (A x

O<k<l O<k<l

Now note that, according to Lemma 4.3.3, the conjugates A\*(x7,)A™* for 0 < k < [ can be seen as
products of comb-trees with same degree as xj,. Moreover, thanks to Lemma 4.1.11 two comb-trees
commute up to higher degree w-trees, and by Lemma 4.2.5 we can assume that these higher degree
w-trees are also comb-trees. Then in the previous expression, up to comb-trees of degree greater than
that of x7,, we can simplify the terms A\*(xz,)A\™* for 0 < k < [ with their inverse to obtain:

5/ _ Xl—iwe ()\ZX?:)\—Z) H XI A
deg(x1,;)<deg(xr)

Since the factor x?z appears in the normal form 6 = Xﬁ X?; e x?::, we can, using the same argument,
express /3" as follows:

g = (x?i"-x?fj X 'XZ’Z> (AlX?fA_l) | b
deg(x1;)<deg(xr)

Finally we denote by €’ the pure part of the product 3’ = 6, the last step consists in computing the
normal form,

0 = Xk, (42)
Starting with
0= (i) (e T s
deg(xr;)<deg(xr)
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this is achieved by rearranging comb-trees degree by degree as it is done in the proof of Theorem
4.2.7. Let us compare the exponents v; and v; associated to the two normal forms (4.1) and (4.2).
First, if deg(xs;) < deg(xy,) then v} = v; since no new comb-tree of degree lower than X, appeared
in the procedure. Second, it is clear that the exponent v/ associated to xz, in (4.2) is now trivial,
ie, v; = 0. Finally, v; = v; for almost all other comb-trees x;; of degree equal to deg(xz;). The
only exceptions come from the conjugate A X?)\_l and concern comb-trees whose head is on the n-th
component. L

In summary, the exponents of x;, of degree deg(xr;) < deg(xs;) whose head is not in the n—th
component remain the same, except for the exponent of xj which has become zero. Hence, by
repeating the above argument, we eventually obtain another conjugate of 8 of the form A\ such that,
any comb-tree of degree lower than or equal to deg(xy,) in the normal form of 6 has its head on the
n-th component. Moreover, since all w-trees of degree greater than n are trivial up to homotopy,
by proceeding by increasing degree, we can get rid of all comb-trees whose head is not on the n-th
component and finally obtain the desired conjugate. ]

As mentioned in Proposition 4.2.23 the group hB, appears as the subgroup of hW B,, generated
by the Artin generators o; for 1 < i < n. We say that a homotopy welded braid is a classical braid
if it belongs to this subgroup. In the following lemma we give a new characterization of the torsion
in hB,, using this notion of classical braid.

Lemma 4.3.5. There is torsion in hB, if and only if for some prime number p < n the braid
Ap € hW B), given by A\p = p1p2 -+ pp—1 is conjugate to a classical braid.

Proof. According to Lemma 2.4.17 if there is torsion in hB,, we can find a torsion element 5 of order
p in hB,, for some prime number p, which we regard as a classical braid g in hW B,. Moreover
Theorem 4.3.1 implies that 7(3) # Id but we know that 7(5)? = Id. In other words, () is a torsion
element of order p in the p-th symmetric group meaning that it is a p-cycle. Then by Lemma 4.3.4,
B is conjugate to the product O\ where the normal form

o-TT

only contains comb-trees with head on the p-th component (for clarity, here and throughout the
remainder of the proof, we denote A, simply by ). Moreover by Lemma 4.3.3, for any integer
ke{l, ... p— 1}, the conjugates AOA=F are products of comb-trees, none of which have their head
on the p-th component. Hence by Lemma 4.2.33, we have that v,, ()\kG)\_k) (p)=(p)if 0 <k <p.
In particular:

T ((ON) (9) = 7y (8NN (N20A2) -« (W TION 7)) (),
= 7w (0)(p)-
On the other hand, since § is a torsion element, S = (OA\)P = 1, which implies that

Y (OA) (p) = 7 (1) (p) = ()

By combining the two previous equality we deduce that ~,, (6)(p) = (p). Moreover by Lemma 4.2.33
again, we also have that v, (6)(k) = (k) for any k < p. In particular, using Remark 4.2.32, we see
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that ,, (0) is the identity, and by injectivity of v, , the braid 6 is as well. Consequently, the classical
braid § is conjugate to A, and thus, the first half of the proof is complete.

To show the converse, we use the fact that any conjugate of A is a torsion element of order p
in hW B, and that, consequently, the braid given by the same expression in hB, is also a torsion
element. O

The end of this section consists in showing that for any integer n, the braid A has no classical
braid as conjugate. To do so, we will first recall the usual characterization from [HL9O] of classical
braids in terms of automorphisms of the reduced free group. In fact, we will take a slightly different
view by using the reduced Magnus expansion of the proof of Theorem 2.3.12. Recall that this is
the homomorphism M from the reduced free group into the polynomial algebra in non-commuting
variables Xj, ..., X, in which monomials X, X,, --- X4, vanish if o; = «a; for some i # j. The
image of a generator z; is given by the polynomial M(x;) = 1 + X;. In [Yur08, Theorem 7.11] and
[Dar23, Corollary 1.13], it is proved that M is injective, so it is an isomorphism onto its image, which
we denote by Z,. Note that Z, is the group generated by 1 + X; for i € {1, ..., n}. We can then
define a representation of the homotopy welded braid group Z : hW B,, — Aut(Z,) given by:

Z:B— MoG(B)oM™,

where (}, is the homotopy welded Artin representation defined in Definition 4.2.18. For later use, let
us compute the image of the Artin generators o; by the representation Z,

1+ X; — 14+ X.1,
Z(oi): 8 1+ X1 — 1+X+ XX — X Xy,
1+X, +— 1+ X, if k¢ {i,i+ 1},

and the image of the virtual generator p;,

1+ X; — 14+ X5,
Z(pz‘) : 1+ X401 — 14X,
1+ X — 1+ Xy, ifké¢{ii+1}.

We also compute the image of the braid A = p; --- p,—1 by the representation Z:

. 1+X;, — 14 X;4q, ifi<n,
Z(/\)'{lJan - 14X,

More simply, we can think of Z(\) as the automorphism permuting the variables X; in the full ring.
Let us now state a property, inspired from [HL90, Theorem 1.7], on classical braids in terms of
automorphisms of Z,.

Lemma 4.3.6. Let 8 € hW B,, be a homotopy welded braid. If B is a classical braid then
Z(B)(M(z172- - 3,)) = M(z122- - 2y,).

Proof. Let us first recall the expression of the homotopy welded Artin representation on the classical
Artin generators o:

Xq = Ti+1,
-1
Cn(oi) Titl > T 1 TiTi41,
Tk — Tk ifk¢{i, i-l-l},
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It is clear by computation that

Chloi)(r1ze - xn) = T122 - -~ Ty,

for any classical Artin generator ¢;. In particular, this implies the well-known fact that if 5 € hW B,
is a classical braid, then

Ch(ﬁ)(xle T xn) = T1X2 " Tn,

or equivalently,

Z(B)(M(z122- - 3y)) = M(z122 - Tp).
0

Let us make the observation that M (r1x9 - - x,,) contains exactly one monomial of degree n,
given by X1 Xy -+ X,,. Furthermore Z(\)(X1X2--- X,) # X1Xa-+ Xy, s0 Z(A) (M (2122~ 2)) #

M(z1x9 -+ x,). In the following lemma, we go a little further in describing elements that are not
fixed points of Z(\).

Lemma 4.3.7. The automorphism Z(\) has no fized point of the form Z([3) (M(l‘]_l‘Q . :cn)) for any
BehWBhB,.

Proof. Let us denote by A the polynomial algebra in non-commuting variables X7, ..., X,, in which
monomials X, Xo, - -+ Xq, vanish if a; = «; for some ¢ # j. Now, consider the additive homomor-
phism F': A — Z defined on the monomials. by:

0 if k <n,

F(XorXay - Xoy) :{ 1 ifk=n.

In other words, the homomorphism F' sends a polynomial to the sum of the coefficients of its monomials
of degree n. Let us note on the one hand that F(Z(p;)(W)) = F(W) and F(Z(0;)(W)) = F(W) for
any W € Z,, and any i. This is clear for p;, which simply permutes the variables X; and X;,1. It is
less clear for ¢;, which, after the permutation, substitutes X; with X; + X; X;.11 + X;11.X;, potentially
introducing new monomials of degree n. However, these monomials appear in pairs and with opposite
signs and thus do not change the value of F'. So it is clear that

F(2(B)(W)) = F(W),
for any 5 € hW B,, and any W € Z,,. Moreover note that,

F(M(z122-2,)) = F((L+X1)(1+ X2) -+ (1 + X,,)),
=1,

hence F (Z(ﬂ) (M(z122- - xn))> = 1 for any € hWB,,. But on the other hand, Z(\) acts on the

nontrivial monomials by permuting the variables X; cyclically, and the orbits of the action are of
cardinality n. Therefore, if an element W € Z,,\{1} satisfies that Z(\)(W) = W then it has to verify

FW)=0 mod [n].
Hence such a fixed point W of Z(\) cannot be of the form Z(3) (M(QZ1I2 -+ y,)) forany € h(WB, O
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We can now state the final theorem of this section.
Theorem 4.3.8. The homotopy braid group hB,, is torsion-free for any number of components n.

Proof. Suppose by contradiction that there is a torsion element in hB,,. By Lemma 4.3.5 there exist
a prime number p < n and some braid 8 € hW B, such that ﬂflx\pﬂ is a classical braid, where
Ap = p1p2- - pp—1 € KW B,. In other words, according to Lemma 4.3.6 this conjugate must satisfy,

Z(B7IAB) (M (2122 - -~ p)) = M(z122 - - ),

or equivalently, . .
Z(N) 0 Z(B) (M (z122 - - xp)) = Z(B) (M (2122 - - 2)).

This implies that Z(8)(M (w122 2p)) is a fixed point of Z()), which yields a contradiction by
Lemma 4.3.7. O

It follows from Theorem 4.3.8 the well known result that the standard braid group B, is torsion-
free for all n. To prove this corollary, we need the following well-known lemma, which essentially goes
back to Artin:

Lemma 4.3.9. The pure braid group P, is torsion-free for any number of components n.

Proof. The pure braid group P, can be expressed as a semi-direct product of free groups, known as
the Artin normal form. The procedure to obtain this normal form is known as braid combing and
is presented in [Art47]. Therefore, since free groups are torsion-free, it simply follows that P, is
torsion-free. O

We recover in this way a result of E. Fadell and L. Neuwirth (see Remark 4.3.11).
Corollary 4.3.10. The braid group By, is torsion-free for any number of components n.

Proof. Let us consider the projection p : B, — hB,. Since hB,, is torsion-free (Theorem 4.3.8), any
torsion element in B, must belong to the kernel K := ker(p). However, it is clear from Proposition
2.2.2 that K < P, thus K is torsion-free by Lemma 4.3.9 and the proof is complete. O

Remark 4.3.11. The study of torsion in braid groups dates back to E. Fadell and L. Neuwirth in
1962. Building upon topological methods, they show in [FN62, Theorem 8] that B, is torsion-free
for every m. Subsequently, P. Dehornoy establishes the stronger property that B, is left-orderable,
in [Deh94] which in particular implies that it is torsion-free. It should be noted that the question of
orderability for the homotopy braid group hB, remains open, constituting a future research direction
that we intend to explore.
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Chapter 5

Homology cobordisms and homology
cylinders

This chapter focuses on the study of homology cobordisms. Exploratory work is conducted to define
a notion of link-homotopy within this context. This pursuit holds significance as string-links and
braids share many common features with homology cobordisms, as discussed at the beginning of
Section 5.2. The chapter begins by defining the framework of homology cobordisms in Section 5.1
and subsequently explores several tentative definitions for link-homotopy in Section 5.2 and 5.3.

5.1 General definition

Let us denote by ¥ a compact connected oriented surface of genus g. We assume for simplicity that
. has exactly one boundary component. Let us recall the definition of the mapping class group.

Definition 5.1.1. The mapping class group of the surface ¥, denoted by M(X), is the group of
isotopy classes of self-homeomorphisms of ¥ that leave the boundary pointwise invariant.

Definition 5.1.2. Let ¢ be a simple closed curve on ¥ not necessarily oriented. We choose a closed
regular neighborhood N of ¢ in ¥ and we identify it with S* x [0,1] in such a way that orientations
are preserved. Then, the Dehn twist along ¢ is the homeomorphism T, : ¥ — ¥ defined by:

x if v ¢ N,
T.(x) = { (e2i7r(9+r),7,) if r = (eQi”((’),r) e N.

We illustrate the effect of a Dehn twist on a small segment in Figure 5.1.
Dehn twists generate the mapping class group as stated in the following theorem.

Theorem 5.1.3. [Deh38] The mapping class group M(X) is generated by Dehn twists along curves
which are non-separating (i.e., the surface given by ¥ with the curve removed, has a single connected
component), or parallel to a boundary component.

The mapping class group of the surface ¥ acts in a canonical way on the fundamental group
7= 71(3, %) based at a point * on the boundary of 3. The induced homomorphism

p: M(E) — Aut(n),
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Figure 5.1: The Dehn twist T, along the simple closed curve c.

studied by Dehn—Nielsen is known to be injective. Moreover, for each k£ > 0, it induces a representation
Pk M(X) — Aut(m/Tgyq17)

where m = I'y'm o I'gm © I'sm > ---, denotes the lower central series of m; i.e., the sequence of
subgroups defined by :

{ I'm=m,
Pppam = [Fkﬂ-aﬂ-]‘

We refer to those representations as the nilpotent Dehn—Nielsen representations. The Johnson
filtration of the mapping class group is the decreasing sequence of subgroups

M(E) = M(E)[0] > M(Z)[1] D M(D)[2] > M(D)[3] -, (5.1)
where M (X)[k] denotes the kernel of py for all k& > 1.

Definition 5.1.4. The first subgroup in this filtration, denoted by M(X)[1], is referred to as the
Torelli group of the surface 3. In simple terms, it is the subgroup of homeomorphisms of X3 that act
trivially on its homology.

Theorem 5.1.5. [Bir71, Pow78] The Torelli group of ¥ is generated by two types of Dehn twists:

- separating twists: Dehn twists along separating curves, i.e., curves that divide the surface into
two sub-surfaces.

- bounding pair maps: The composition of a Dehn twist along a non-separating curve and the
inwverse Dehn twist along another non-separating curve, disjoint from the first one but having
the same homology class.

Let us now define the main objects of the section : homology cylinders.

Definition 5.1.6. A homology cobordism over ¥ is a pair (C,i), where C is a compact connected
oriented 3-manifold and i : (X x [—1,1]) — 0C is an orientation-preserving homeomorphism such
that the inclusion iy : ¥ — M defined by x — i(x, £ 1) induce isomorphisms H.(X;Z) — H,(C;Z).
Thus the 3-manifold C' is a homology cobordism between 0+C := iy (X) and 0_C :=1i_(%).
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For simplicity, we often denote the homology cobordism (C,i) by C, in particular, we denote the
trivial homology cobordism (X x [—1, 1], Id) simply by ¥ x [—1,1]. We call homology cylinders of
¥ the homology cobordisms for which the composition (i_)~! o (i) is the identity of H(X;Z).

We say that two homology cobordisms are homeomorphic if there is an orientation-preserving
homeomorphism f : C'— C’ such that f|scoi = i'. The composition ‘o’ of two homology cobordisms
C and (' is defined by ‘stacking’ C’ on top of C, i.e., we define

Co C, =C Vito(i )1 C/,

with 0_(C o C") = 0_(C') parameterized by i_ and 04 (C o C") = 0,(C") by #/,. With this operation,
the set of homeomorphism classes of homology cobordisms of ¥, denoted by C(X), forms a monoid.
The set of homeomorphism classes of homology cylinders of ¥, denoted by ZC(X) is a submonoid

of C(X). Moreover, the mapping class group is embedded in C(X) using the mapping cylinder
construction ¢ : M(X) — C(X), defined as follows:

U(p) = (2 x [~1,1],(1d x {~1}) U (8% x Id) U (¢ x {1})).

In fact, the image of ¢ is the group of invertibles in the monoid C(X), see [HM12, Proposition 2.4].
Similarly, the Torelli group embeds in ZC(X) through the same mapping cylinder construction.

Thanks to Stallings’ theorem [Sta65] we can extend the nilpotent Dehn—Nielsen representations
to homology cobordisms.

Theorem 5.1.7. [GL05, Theorem 3] For any homology cobordism C € C(X) and any k € N, the
composition (i_)~' o (iy) induces a homomorphism.:

pr : C(2) —» Aut(n/Tjiqm).

Note that the restriction of this morphism to ¢(M (X)) coincides with the previously defined Dehn—
Nielsen representation, justifying the continued use of the same notation. Furthermore, if we denote
by C'(X)[k] := ker(py), we obtain a decreasing sequence of submonoids:

C(x) = C(2)[0] 5 C(R)[1] 2 C(X)[2] > C(X)[3] > - --

which extends the filtration (5.1), and is still referred to as the Johnson filtration.

5.2 Link-homotopy in an algebraic way

There is a strong analogy between homology cobordisms and string-links. Firstly, the pure braid
group (which can be defined as the mapping class group of the punctured disk), forms the subgroup
of invertibles in the string-links monoid, as does the mapping class group of ¥ for the monoid C(X).
Moreover, as discussed in [GL05, Remark 5.3], C(X) can be converted into a group by considering their
homology cobordism classes, similarly as string-links do up to concordance. Finally, Milnor string-
links invariants, appears as the analogues of the homomorphisms py, as pointed in [GL05, Remark
2.6] and [Hab00a]. See [Ver2l, Section 2.4] for a good exposition of this so-called Milnor-Johnson
correspondence. In light of this correspondence, it is thus natural to investigate an analogue of the
link-homotopy relation of string-links in the context of homology cobordisms.
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5.2.1 Reduced group

To establish a notion of link-homotopy for homology cylinders, or more generally for homology cobor-
disms, it is natural, at the algebraic level, to consider them as automorphisms of the reduced free
group. Since the fundamental group of X, is a free group, Theorem 5.1.7 seems to be a good first step
in this direction. Let us fix the family of generators x1, y1, ..., x4, Y4, illustrated in Figure 5.2.

Figure 5.2: Generators x1, y1, ..., T4, Yg of .
We recall from Proposition 1.2.5 the subgroup J := J; of m generated by commutators in
1, Y1, ---, Tp, Yp with repeats and the reduced quotient of 7 given by Rw := 7w/J. We make

the observation that, for k > 2g, Rx is given by the quotient of 7/T'y 17 by J/T'y1m. This follows
from the fact that any commutator of weight greater than 2¢g has repeats and therefore I'y,1m < J.
Then for k > 2g we may hope that p; will be turned into a homomorphism from C(X) to Aut(R).
The only condition that must be verified to do so is that for any homology cobordism C we have:

pk(C)(J/Fk+17T) = J/Pk+17r. (52)

Moreover, if the homology cobordism Cy is given by a mapping cylinder construction, i.e., Cy = ¢(¢)
for some ¢ € M(X), then it induces an automorphism of the free group p(Cy) := p(¢), and to see it
as an element of Aut(Rm), we simply need:

p(Co)(T) = J. (5.3)

But this is not the case in general as the following two counter-examples show. Let us set o1 the
surface with genus g = 2 and one boundary component.

Counter-example 5.2.1. We consider the mapping cylinder +(T.) of the Dehn twist T. along the
simple closed curve c, illustrated in Figure 5.3.
This element, denoted by C., seen as an automorphism of the fundamental group, is given by:

p(Ce) = ®m —> o«
T = T,
vy = Y1,
T2 > T2,
Y2 = Y272.

We compute the image of the commutator with repeats [[z1,y2],y2] € J by the automorphism p(C):
p(Co)([[z1,y2)5y2]) = [[z1,y232] y222].
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Figure 5.3: The closed curve c.

This element, seen as an element of the reduced free group, has normal form (Definition 1.2.7) given
by:
p(Co)([[z1.92]92]) = [[21,22] 2] [[21,2] 2],

By uniqueness of the normal form (Theorem 1.2.10), the image p(Ce)([[z1,y2],y2]) does not belong to
J. Therefore condition (5.3) is not verified, and we cannot see C. as an automorphism of the reduced
free group.

But the homology cobordism in Counter-example 5.2.1 is not a homology cylinder, and one might
expect the desired construction to be satisfied by these objects. However, as shown in Counter-
example 5.2.2, we still have the same problem for homology cylinders.

Counter-example 5.2.2. Consider the homology cylinder Cyp := L(Tl;l oTy), where Ty, and Ty, are
the Dehn twists along the simple closed curves a and b, illustrated in Figure 5.4. Note that (a,b) forms
a genus one bounding pair.

Figure 5.4: The bounding pair (a,b).

This homology cobordism, induces an automorphism on the fundamental group given by:

p(Cop) @+ ™ — T
z1 = mfyey e ey ey
yi = wofyney iz ]yt
T2 = $2[y1,$1_1 $2[$1_1,y1].%'2_1
Y2 yawalzy ]yt
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We have that:

LGOI I [ R P 0| A ESSe 1| I
= i[wz,yz [y1.21]] 92 [yl,fcl]] mod [J]
=[[z2,y2),[y1,21]] [[xzv[ylm]]?m] mod [J]
E:[[ifl,yl]wﬂ@] [[[xlayl],xz]yz]_2 mod [J]

and once again we come across a normal form which is not that of the trivial element. Hence this
homology cobordism does not induce an automorphism of the reduced fundamental group.

To address the issue highlighted by Counter-examples 5.2.1 and 5.2.2, we aim to identify another
normal subgroup, denoted as H <17, such that homology cobordisms can be viewed as automorphisms
of the quotient group 7/H. Our objective is twofold: firstly, we require that for any sufficiently large
integer k£ > 0, the subgroup I'y7 is contained within H to leverage the applicability of Theorem
5.1.7. Secondly, to ensure the quotient’s relevance in terms of link-homotopy, we seek a reduced-type
quotient, meaning that some elements commute with their conjugates. As a result, in the subsequent
section, we are led to consider the notion of fully reduced group.

5.2.2 Fully reduced group

In this section, we extend the definition of reduced groups in order to obtain a quotient which does
not depend on a chosen family of generators.

Definition 5.2.3. Let G be a group and let us define H < G to be the normal subgroup generated by
elements of the form [w, \wA™t], for any w,\ € G. We call fully reduced quotient, the quotient
G/H and we denote it by RrG. Roughly speaking, RxrG is the quotient of G in which any element
commutes with its conjugates.

Proposition 5.2.4. For any group G and any x,y,z € RrG, the following equalities hold in RrG:

(1) [x_lay] = [ﬂ?,y]_l = [xay_l];
@) [[ryl2]{l2]y][[y.2] 2] = 1
(3) [[1’,3/], ] = [[ZL‘,Z],y]_ .

Proof. The first equality corresponds to the following fully reduced relations:

z
z

1 1 1

=yay o !

w_lyxy_ =xy x_ly.

For the second relation we recall first the well known Hall-Witt identity:
x_l [[y,x_l],z]m ' 2_1[[-7),2_1],:1/]2 : y_l[[zay_l]rx]y =1

Then we turn all the factors into the desired ones. For example, applying (1) to [[y,:fl],z] yields
[[a:,y],z], which is equal to its conjugate by x due to the fully reduced quotient relations. Finally,
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the last equality is derived from the observation that, on the one hand, the commutator [[x,yz],yz]
is trivial in RFG and, on the other hand, that we have the two equalities

[a,[b.c]] = [ab][c.[a.b]][asc],
[[va]aa] = [b,[c,a]] [C,CL] [baa]7
for any a, b, cin any group GG. Then, by iterating these relations we rewrite the commutator [[z,yz],yz]

as a product of commutators in x, y, and z. However, commutators of degree four or higher necessarily
contain repetitions and are therefore trivial in RFG. Consequently, we ultimately find that

[[xvyzLyz] = [[ﬂs,y],yz] [[m,y],z] [[‘T’Z]vy]'

Proposition 5.2.5. For any group G and any triple x, y, z € RrG we have that:

[[1’7y],2]3 =1

Proof. We start with equality (3) from Proposition 5.2.4, and then apply (1) from Proposition 5.2.4
twice:

Similarly we have that
[[IE,y],Z] = [[yaz]vm]a

then we conclude using (2) from Proposition 5.2.4. O

In view of Proposition 5.2.5, it would seem that the fully reduced quotient is not suitable for our
study. Too much information is lost, and it is unlikely that link-homotopy translates algebraically
into this quotient. To convince ourselves, let us take a look at what the ‘fully reduced’ condition
generates in the context of braids. Recall from Corollary 2.2.6 that the pure homotopy braid group
hP, is given by taking the reduced quotient of the pure braid group generated by the generators A;;
for 1 <4 < j < n. We consider first some relations of the fully reduced pure braid group RrPF,.

Proposition 5.2.6. If we set three indices 1 < r < i < j < n then the associated pure braids
generators in RrP, satisfy:
[Ari, Arj] = [Arj,Aij] = [Aij, Aril.

For any distinct pairs of indices {r,i} n {s,j} = &, in RrP,, we also have that:
[AriaAsj] =1

Proof. The first relations are already true in hP, = RF,, as mentioned in Theorem 2.2.6, so they
must hold in Rz F,,. The other equality is also verified most of the time in hP,, = RP,, with the only
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remaining case being, without loss of generality, when 1 < r < s <1 < j < n. In that case, according
to Theorem 2.2.6, we have:
[AM;AS]'] = [[AIJ7A7"]]7ASJ]7

which we rewrite using the inverse of the first relation as:
[ArivAsj] = [[ArijriLAsj]-

Then applying relation (1) and (3) from Proposition 5.2.4 as we did in the proof of Proposition 5.2.5
we get,

[Ari, Asj] = [[Ari,Asj] Arj]-
And finally we conclude using Theorem 2.2.6 again,
[Ari,Asj] = [[[Aij, Arj],Asi] Arj] = 1,
where the last equality holds since we have a commutator with repeats. ]
Lemma 5.2.7. The fully reduced pure braid group RrP, is nilpotent of order 3.

Proof. Set A;j, Ars and Ay three generators in R zP,. We simply need to show that the commutator
C = [Ap,[Ars,Aij]] is trivial in Rz P,. First, according to the second equality from Proposition 5.2.6,
the commutator [A,s,A4;;] is trivial if {i,j} n {r,s} = . Otherwise, we can suppose without loss of
generality that j = s. We get then

C = [Aw,[Arj, Aij]] = [Ari[Aij, Aril] = [Akis[Ari, Arj]]
Then, using (2) from Proposition 5.2.4 we also have that
O = [A, [ Ak, Ai 1] = [Aiju[ Ak Aril] = [Aris[Ak, Ars]]

Now using the second relation from Proposition 5.2.6 again, we have that C' is trivial if one of the
following equalities hold

{kvl} N {27.7} = @a {kal} N {T7i} = @7 {kvl} N {T7j} = @

If none of these equalities holds, then we have {k,l} = {i,j}, or {k,l} = {r,}, or {k,l} = {r,j} and C
is also trivial. O

Theorem 5.2.8. The fully reduced pure braid group RrP, coincides with the third nilpotent quotient
of the pure braid group.

Proof. According to Lemma 5.2.7 we only need to prove that the commutator [w,AwA~!] belongs to
the third subgroup of the lower central series. That is shown by the following computation:

[wWAWAT] = WA A ™A = WA w]w Hw,A] = [w,[Aw]]
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5.3 Link-homotopy using graph-claspers

In this section, we once again attempt to broaden the concept of link-homotopy within the context of
homology cobordisms. We draw inspiration from the characterization in terms of repeated claspers
(see Lemma 1.1.10). With this objective in mind, let us first define graph-claspers within the context
of homology cylinders. To provide a rough comparison, claspers, as defined in Chapter 1, are distin-
guished from graph-claspers by their leaves: previously, they were disks intersecting tangle strands,
whereas now they are framed knots.

5.3.1 Graph-claspers
Let M be a compact oriented 3-manifold.

Definition 5.3.1. A connected surface G smoothly embedded in the interior of M is called a graph-
clasper in M if it can be decomposed into leaves, nodes, and edges as follows:

e Edges are 1-handles that connect leaves and/or nodes, and each edge having two ‘ends’, namely
the attaching loci of the 1-handle.

e Leaves are framed knots, i.c., embeddings of annuli. Fach leaf should have precisely one end of
an edge attached to it.

e Nodes are discs, and each node should have exactly three ends of edges attached to it.

When provided with a graph-clasper G € M, we can omit its leaves and collapse the remainder
into a one-dimensional graph. This process results in a uni-trivalent graph known as the shape of G.
Graph-claspers whose shape is a tree graph are called tree-claspers.

As before, we depict graph-claspers diagrammatically, as shown in Figure 5.5, for example. To

P,
=)

Figure 5.5: Diagram of a graph-clasper.

recover the represented graph-clasper, simply thicken the diagram using the blackboard framing
convention. The nodes are represented by large dots and are thickened according to Figure 5.6.
Additionally, we use markers called twists to indicate the presence of half-twists (see Figure 5.7).

Finally, we also use boxes, a graphical convention representing the entanglement of three leaves,
as depicted in Figure 5.8.

Definition 5.3.2. Let G be a graph-clasper in M. We define the degree of G, denoted by deg(G),
as its number of nodes. Graph-claspers of degree 0 consist of only one edge and two leaves, see Figure
5.9.
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Figure 5.6: The diagrammatic node thick- Figure 5.7: The diagrammatic negative and posi-
ening pattern. tive twist thickening patterns.

Figure 5.9: A degree 0 graph-clasper.

We stress that the notion of degree only makes sense for graph-claspers, which are connected
surfaces decomposed into nodes, edges, and leaves. In particular, boxes can be misleading in this
respect; they must be thought of as the junction of three claspers.

Given a disjoint union of graph-claspers F' in M, there is a procedure called surgery detailed in
[Hab00b] to construct a new manifold denoted Mp. First, we replace each node with three leaves
forming a copy of the Borromean rings, as shown in Figure 5.10. This yields a union of degree 0

Figure 5.10: Replacing nodes by Borromean ring leaves.

graph-claspers. Next, we replace each degree-zero clasper with a two-component framed link, as
shown in Figure 5.11. Finally, we apply Dehn surgery along the resulting framed link to obtain Mp.

.- ~. .- —
R LIRY 2R e Nl SR
! ‘a > [ ‘a
“N‘) Cf" “N’ "'
. 4 - ¢

Figure 5.11: An example of a diagrammatic graph-clasper.
Let us recall some clasper calculus from [Hab00b].
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Proposition 5.3.3. [Hab00b, Proposition 2.7] The set of moves on graph-claspers depicted in Figure
5.12 yields surgery results that are isotopic.

7o ¢3 wiw,{/\@

Figure 5.12: Some moves of clasper calculus.

Definition 5.3.4. We call Yk-equivalence the equivalence relation on 3-manifolds generated by
surgery on graph-claspers of degree at least k and ambient isotopies. We use the notation

M ~ M’
Yy

to mean that the two manifolds M and M’ are Y} -equivalent.

Surgery along a degree 1 graph-clasper, coincides with the Borromean surgery introduced by S.
Matveev [Mat87]. It follows from the main result of [Mat87] that any integral homology sphere is
Yi-equivalent to S®.

5.3.2 Homology cylinders and graph-claspers

We now delve back into the realm of homology cobordisms, specifically focusing on the set of homology
cobordisms that are Yj-equivalent to ¥ x [—1,1], denoted as Cx(X). These sets are indeed submonoids
of C(X) (see [Gou99, Hab0Ob]). Remarkably, as shown in [MMO03, Section 4.1], the first of these
submonoids coincides with the monoid of homology cylinders, i.e.,

Ci(2) = ZC(X).

In other words any homology cylinders C' € ZC(X) can be presented by a union of graph-claspers
in ¥ x [—1,1], meaning there exists a disjoint union of graph-clasper F' in ¥ x [—1,1] such that
C = (¥ x [-1,1])p. Additionally, as for example stated in [HM12, Proposition 5.4], the resulting
Y-filtration

CX)=Co(X)2C1(X) 2Ce(X) DC3(X) D -
is finer than the Johnson filtration, in the sense that for any k,
Cr(X) c C(D)[k].

99



5.3.2.1 Link-homotopy for homology cylinders I

As mentioned in the introduction, link-homotopy is closely related to the notion of concordance. In-
deed, it constitutes a more flexible equivalence relation. More precisely, if two links are concordant,
then they are also link-homotopic. Therefore, in order to define a notion of link-homotopy for homol-
ogy cobordisms, it seems natural to begin by examining the analogue of concordance for homology
cylinders, and its interpretation in terms of graph-claspers

Definition 5.3.5. Two homology cobordisms (C1,i1) and (C2,i2) over ¥ are homology cobordant
if the closed, oriented 3-manifold obtained by gluing C1 and the reverse of Co (i.e., Cy Yirois! (—C2))
bounds a compact, oriented smooth 4-manifold W in such a way that both inclusions C1 < W and
Cy < W induce homology isomorphisms. Here, —Cy represents the homology cobordism given by

reversing the orientation of Cy together with the homeomorphism ig o T, where T is the involution of
Y x [-1,1] defined by T(x,t) = (x, —t).

Being homology cobordant defines an equivalence relation among homology cobordisms, which
is consistent with their composition. The resulting quotient monoid is known as the homology
cobordism group and is denoted as HC(X) (see [GLO05]). As the name suggests, this monoid forms
a group, with the inverse of an element C' given by —C. Moreover, by considering homology cylinders,
we obtain a subgroup of HC(X) denoted as HZC(X). The homology cobordism class of a homology
cobordism refers to its equivalence class as an element of the homology cobordism group.

Theorem 5.3.6. [Lev01, Theorem 2] Surgery along graph-claspers that are not tree-claspers does not
change the homology cobordism class of a homology cobordism.

Remark 5.3.7. Theorem 5.5.6 implies that in order to define a notion of link-homotopy which is
consistent with the homology cobordism group, it is necessary that surgeries induced by graph-claspers
that are not tree-claspers do not change the link-homotopy class of a homology cobordism.

Let us fix B = {a1, b1, ..., a4, by} a symplectic basis of the first homology group H(3;Z)
illustrated in Figure 5.13. We can see a leaf of a graph-clasper in ¥ x [—1,1], as an element of

Figure 5.13: Symplectic basis B = {a1, b1, ..., a4, by} of Hi(3;Z).
H1(3;Z). From this interpretation, we can define a first tentative notion of repeated graph-clasper.

Definition 5.3.8. A graph-clasper G in ¥ x [—1,1], has repeats if at least two of its leaves, seen as
element of Hi(X;Z), belong to the generators ay ,bi, ..., ag, by and are equal.
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Remark 5.3.9. We could have proposed a larger definition of repetition, in which the leaves only
need to represent the same element of Hy(X;Z). However, we will not delve further as the seemingly
finer notion of Definition 5.3.8 already proves unsatisfactory. Indeed, we show in Example 5.3.11
that the link-homotopy based on repeated claspers from Definition 5.3.8 corresponds almost to the
Ys-equivalence.

Definition 5.3.10. Let us consider two disjoint unions of graph-claspers Fy and Fy in ¥ x [—1,1].
Suppose that Fy differs from Fy by either graph-claspers that are not tree-claspers or tree-claspers
with repeats. We say that the two homology cylinders given by (X x [—1,1])p, and (X x [-1,1]) g, are
link-homotopic.

Example 5.3.11. The series of equivalences presented in Figure 5.14 demonstrates that the link-
homotopy, as defined in Definition 5.3.10, nearly implies the Ys-equivalence. To be more specific, any
degree-2 clasper with one of its leaves matching one of the generators ay, by, ..., ag, by of H1(3;Z),
18 trivial up to link-homotopy. Let us take a closer look at these equivalences. The first pair of graph-

Qak
- -
l—~\
4 o~
Wi \l
G
1
] ~ \—’
\

Figure 5.14: The link-homotopy from Definition 5.3.8 imply the Ys-equivalence.

claspers, G1UGa, is trivial up to link-homotopy. Indeed, the graph-clasper G1 has repeats and can thus
be deleted up to link-homotopy; this leaves us with the graph-clasper G, containing a leaf bounding a
disk, which is thus trivial by moves (0) from Proposition 5.3.3. Subsequently, we apply more clasper
calculus from Proposition 5.3.3. The first equivalence is given by moves (5) and (1), which introduce
a box. The next equivalence involves applying move (2) to this box. Applying move (4) twice yields a
new graph-clasper with repeats. Finally, we remove it up to link-homotopy and use move (3) to obtain
the last equivalence.

Example 5.3.11 shows that any degree 2 tree-clasper, having a leaf representing a generator a; or
b; for some i, can be deleted up to link-homotopy. Therefore, Definition 5.3.10 is not satisfactory, and
we need to find a weaker definition of link-homotopy that provides better control over the nature of
leaves with repeats.

5.3.2.2 Link-homotopy for homology cylinders 11

The above tentative definitions of link-homotopy proved unsatisfactory, leading us to an even more
constrained notion (see Definition 5.3.14). The latter is based on the simplification of leaves developed
in [GGPO1, Section 4.3]. Please note that the convention utilized in [GGPO01] for surgery along a graph
clasper, is the opposite to the convention used in this thesis.
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Lemma 5.3.12. [GGPO1, Corollary 4.3] Let G be a graph-clasper of degree k in ¥ x [—1,1], and let
[ be a leaf of G. An arc « starting at the external vertex incident to | and ending at another point
on 1 splits | into two arcs, l1 and lo. Denote by G1 and Go the graph-claspers obtained from G by
replacing the leaf | with l1 U a and ly U « respectively, see Figure 5.15. Then

(Zx [-11])4 -~ (Ex[-L1]) g, - (Ex[-11])g,-

k+1

G G G-

Figure 5.15: Graph-claspers G, G; and G3 of Lemma 5.3.12.

The idea is to apply Lemma 5.3.12 and clasper calculus, in order to reexpress, up to higher degree
graph-claspers, any disjoint union of tree-claspers in ¥ x [—1,1] as a product of ‘simpler’ tree-claspers,
with leaves of two specific types:

- B-leaves: leaves that are parallel copies of the curves a; or b;, framed along ¥ and pushed
inside ¥ x [—1,1],

- Special-leaves: leaves which bound a disk disjoint from the rest of the tree-clasper and which
are (—1)-framed.

Figure 5.16: A B-leaf. Figure 5.17: A special-leaf.

The fact that we can reduce the study to these two types of leaves only, follows from the same
arguments as in [GGPO01, Section 4.3].

Let us now define the notion of a simple tree-clasper using these two types of leaves. It is important
to note that the term ‘simple’ also appears in [Hab00b], but we use it here in a different way.

Definition 5.3.13. Given a disjoint union of graph-claspers F in ¥ x[—1,1], a simple tree-clasper
T, is a tree-clasper that lives in a ‘slice’ ¥ x [—e,e] of ¥ x [—1,1] which is disjoint from G\T, and
such that all of its leaves are either B-leaves or special-leaves.

Note that, in particular, having repeats for a simple tree-clasper means that it contains two
B-leaves that are parallel copies of the same curve.
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Definition 5.3.14. We define the link-homotopy relation between homology cylinders, presented
by unions of graph-claspers in ¥ x [—1,1], as the equivalence relation generated by surgeries on the
three following types of graph-claspers:

- Graph claspers that are not trees,
- Graph claspers of degree at least 2g — 1,
- Simple tree-claspers having repeats.

Let us discuss the three types of surgeries generating the link-homotopy relation in Definition
5.3.14.

Firstly, in accordance with Remark 5.3.7, surgeries on graph-claspers that are not tree-claspers
must preserve homology cylinders up to link-homotopy.

Secondly, as mentioned earlier, the procedure of simplification of leaves works up to higher-degree
tree-claspers. To ensure the termination of this procedure, it is necessary to eliminate all claspers
beyond a certain degree. The degree 2g — 1, which corresponds to tree-claspers with 2g + 1 leaves,
appears to be the suitable degree for this purpose. To justify this choice, we draw upon the analogy
between string-links and homology cobordisms discussed at the beginning of Section 5.2. In the case
of string-links with n components, C,-equivalence implies link-homotopy: claspers with n + 1 leaves
inevitably have repeats and are thus trivial up to link-homotopy. Analogously, since H;(X;Z) has
rank 2g, it seems natural to eliminate all graph claspers with 2g+ 1 leaves, which precisely corresponds
to graph-claspers of degree at least 2g — 1.

Finally, we eliminate tree-claspers with repetitions once the clasper union is rewritten as a product
of simple tree-claspers.

All the constraints discussed previously lead us to Definition 5.3.14, which, although somewhat
unnatural, appears to be a promising candidate for a theory of link-homotopy for homology cylinders.
We will not pursue this study further here, but consider this notion as a possible starting point for
future research in this direction.

Remark 5.3.15. The definition of link-homotopy in terms of simple tree-clasper, can probably be
further refined. Indeed, such claspers containing a special leaf, can often be deleted up to higher order
claspers; see [GGPO1, Lemma 4.9]. As a matter of fact, the latter result, combined with the Slide
move for special leaves [GGPO01, Theorem 3.1], seem to suggest that only degree 1 graph-claspers with
three special leaves would remain.

The first Johnson homomorphism does not detect these particular tree-claspers, as shown in [MMO03],
which seems to conflict with the Milnor-Johnson correspondence. Indeed, Milnor string-link invariants
provide a complete link-homotopy invariants.

This suggests a possible adjustment of Definition 5.5.14 making these degree 1 tree-claspers trivial up
to link-homotopy. However, this would further complicate the already involved Definition 5.3.14. An
alternative would be to keep the definition unchanged, knowing that these tree-claspers are 2-torsion
element and can be detected by the Rochlin invariant. In other words, we can group these terms

together up to isotopy and eliminate them pairwise: parity is determined by the Rochlin invariant, as
shown in [MMO03].
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Appendix A

Code of the proof of Theorem 2.4.19

import itertools

#
#
#
#
#
#
#
#
#
#

The first part of the program is dedicated to the computation of the
representation $\gamma$. In the following functions, the variable ’Commu’ is a
sequence [il,...,im] representing the commutator (il,...,in) in $\mathcal{V}$.
The variable ’Index’ is an integer representing the index of the homotopy braid
generator $\sigma_i$.

The first function, IHX, serves as a preparatory function for the upcoming
computation. Then the two functions Gamma_plus and Gamma_minus compute
\gamma (\sigma_i) (i_1,...,im) and \gamma(\sigma_i"{-1})(i_1,...,im) and return a
list of lists in the form [[coefl,I1], [coef2,I2],...,[coefm,Im]], corresponding
to the linear combination coefl(I1)+coef2(I2)+...+coefm(Im) in $\mathcal{Vl}$.

def IHX(SubCommu,Commu) :

return([[Commu[0]+1,*Commu[1:Commu[0]],SubCommu[0] ,*Commu[Commu[0]:]1],
[*Commu [ : Commu [0]+1] ,SubCommu [0] , *Commu [Commu [0]+1:]1]])

def Gamma_plus(Index,Commu) :

k=-1
1=-1
3=0

while (k+1)*(1+1)==0 and j<len(Commu) :
if Commul[jl==Index :
k=]
if Commul[jl==Index+1:
1=]
j=1
if 1==-1:
if k==-1:
return([[1]+Commu] )
return([[1,*Commul[:k],Index+1,*Commul[k+1:1]1])
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def

if k==-1:
CommuO=[*Commu[:1],Index,*Commu[1+1:]]
Commul=[*Commul[:1],Index,*Commul[l:]]
if 1>0:
Commu2=[*Commu[:1+1] ,Index,*Commu[1+1:]]
return([[1]+CommuO, [1]+Commul, [-1]+Commu2] )
return([[1]+CommuO, [1]+Commul])
if k>0:
if k<1:
return([[1,*Commul:k],Index+1,*Commu[k+1:1],Index,*Commul[l+1:]1]1])
return([[1,*Commul[:1],Index,*Commu[l+1:k],Index+1,*Commu[k+1:]]])
J=Commu[1:1]
J.reverse()
L=[[2,Index,*Commull:]]]
while J!'=[]:
L=[IHX(J,K) [j] for K in L for j in range(0,2)]
J=J[1:]
for K in L:
K[0I=(-1)**x(K[0]+1)
return(L)

Gamma_minus (Index,Commu) :
k=-1
1=-1
j=0
while (k+1)*(1+1)==0 and j<len(Commu):
if Commul[jl==Index :
k=j
if Commul[j]l==Index+1:
1=]
j=1
if k==-1:
if 1==-1:
return([[1]+Commu] )
return([[1,*Commu[:1],Index,*Commu[1+1:]]])
if 1==-1:
CommuO=[*Commu[:k] , Index+1,*Commu[k+1:]]
Commul=[*Commul[:k+1],Index+1,*Commu[k+1:]]
if k>0:
Commu2=[*Commu [ :k] , Index+1,*Commu[k:]]
return([[1]+CommuO, [1]+Commul, [-1]+Commu2] )
return([[1]+Commu0, [1]+Commul])
if k>0:
if k<1:
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representation on any linear combination of commutators in $\mathcal{V}$. More
precisely, these functions compute the projection onto the subspace generated

Proj_gamma, computes the representation on any homotopy braid $\beta=\sigma_{il}

return([[1,*Commul[:k],Index+1,*Commul[k+1:1],Index,*Commu[1+1:]]1])
return([[1,*Commu[:1],Index,*Commu[l+1:k],Index+1,*Commul[k+1:]]])
J=Commu[1:1]
J.reverse()
L=[[2,Index,*Commull:]]]
while J!=[]:
L=[IHX(J,K) [j] for K in L for j in range(0,2)]
J=J[1:]
for K in L:
K[0]=(-1)**(K[0]+1)
return(L)

The next functions, Proj_gamma_generator and Proj_gamma, compute the

#
#
#
# by commutators of length lower or egual to k. Furthermore, the second function,
#
#

\sigma_{i2}...\sigma_{im}$ encoded by the variable Braid=[il,i2,...,im].

def

def

Proj_gamma_generator (k,Index,Linear_combi) :
if Index>0:
return([[Y[O]*I[0]]+Y[1:] for I in Linear_combi
for Y in Gamma_plus(Index,I[1:])
if len(I)<=k+1 if len(Y)<=k+1])
if Index<O0:
return([[Y[O]*I[0]]+Y[1:] for I in Linear_combi
for Y in Gamma_minus(-Index,I[1:])
if len(I)<=k+1 if len(Y)<=k+1])
return([[]])

Proj_gamma(k,Braid,Linear_combi):
Braid.reverse()
length=len(Braid)
for i in range(0,length):
Linear_combi=Proj_gamma_generator(k,Braid[i] ,Linear_combi)
§=0
while j<len(Linear_combi):
1=j+1
while 1<len(Linear_combi):
if Linear_combil[j][1:]==Linear_combi[1][1:]:
Linear_combi[j] [0]=Linear_combi[j] [0]+Linear_combi [1] [0]
Linear_combi.pop(1)
1-=1
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1+=1
if Linear_combil[j] [0]==0:
Linear_combi.pop(j)
j-=
j+=1
return(Linear_combi)

# We now define the Inverse, Commutator, and Simplification functions to perform
# operations on homotopy braids. The first two produce inverses and commutators
# of braids, while the Simplification function simplifies pairs of trivial

# generators $\sigma_i\sigma_i~{-1}$.

def Inverse(Braid):
length=len(Braid)
return([-Braid[length-i-1] for i in range(0,length)])

def Commutator(Braidl,Braid?2):
return(Braidl+Braid2+Inverse(Braidl)+Inverse (Braid2))

def Simplification(Braid):
i=0
while i<len(Braid)-1:
if Braid[i]==-Braid[i+1]:
Braid.pop(i+1)
Braid.pop(i)
j-=
i+=1

# The function Comb_clasper_generator constructs the comb-clasper (i, j) as a
# word in the homotopy braid generators $\sigma_i$. Similarly, the function

# Comb_clasper constructs the comb-clasper (il, i2, ..., in) as a word in the

# homotopy braid generators $\sigma_i$.

def Comb_clasper_generator(i,j):
return([j-k for k in range(l,j-i)]+[i,i]+[-i-k for k in range(1,j-i)])

def Comb_clasper(I):
length=len(I)-1
T=Comb_clasper_generator(I[0],I[length])
for i in I[1:length]:
T=Commutator (T,Comb_clasper_generator (i,I[length]))
return(T)
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#
#
#
#
#
#
#
#
#
#
#

In the final part of the program, we construct the family {\theta_k} of
homotopy braids from Section 2.4.2. We begin with the Test, Lambda_action, and
Filter functions, which, given a linear combination of commutators in
\mathcal{V}, allow us to retain only those corresponding to comb-claspers in
nice position. Subsequently, we end with the Torsion_candidate function,
explicitly computing the braid \theta_{p-2} from Section 2.4.2. More precisely,
the Torsion_candidate takes a prime number p as input and returns the braid
\theta_{p-2} along with its image under the gamma representation. It is worth
noting that if this image contains the element [coef, 1, 2, ..., pl, and coef
is not divisible by p, then it provides an obstruction to the presence of
torsion in the homotopy braid group.

def Test(Commu,Orbit):

for Representative in Orbit:
if Commu==Representative:
return(l)
return(0)

def Lambda_action(Sequence):

S=[0]+Sequence[:-1]
return([j+Sequence[-1]-Sequence[-2] for j in S])

def Filter(Linear_combi):

i=0
while i<len(Linear_combi):
T=sorted(Linear_combi[i] [1:])
Orbit=[]
for j in T[:-1]:
T=Lambda_action(T)
Orbit=0rbit+[T]
m=1
j=i+1
while j<len(Linear_combi):
if Test(sorted(Linear_combil[j][1:]1),0rbit)==1:
Linear_combi.pop(j)
j-=
m+=1
=1
i+=1

def Torsion_candidate(p):

Theta=[’lambda’]
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Braid=[-i for i in range(1,p)]
for k in range(2,p):
Braid_power_p=Braid*p
Simplification(Braid_power_p)
Image=Proj_gamma(k,Braid_power_p, [[1,p]]) [1:]
Filter(Image)
for T in Image:
Theta=[T]+Theta
if T[0]>0:
Braid=T[0] *Comb_clasper (T[1:])+Braid
if T[0]<O:
Braid=-T[0]*Inverse(Comb_clasper(T[1:]))+Braid
Braid_power_p=Braid*p
Simplification(Braid_power_p)
Image=Proj_gamma(p,Braid_power_p, [[1,p]]) [1:]
return(Theta, Image)
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