ON BRAIDS AND LINKS UP TO LINK-HOMOTOPY

EMMANUEL GRAFF

ABSTRACT. This paper deals with links and braids up to link-homotopy, studied from the viewpoint
of Habiro’s clasper calculus. More precisely, we use clasper homotopy calculus in two main directions.
First, we define and compute a faithful linear representation of the homotopy braid group, by using
claspers as geometric commutators. Second, we give a geometric proof of Levine’s classification of
4-component links up to link-homotopy, and go further with the classification of 5-component links in
the algebraically-split case.

1. INTRODUCTION

The notion of link-homotopy was introduced in 1954 by J.W. Milnor in [22], in the context of knot
theory. It is an equivalence relation on links that allows continuous deformations during which two
distinct components remain disjoint at all times, but each component can self-intersect. Any knot
is link-homotopic to the trivial one, but for links with more than one component this equivalence
relation turns out to be quite rich and intricate. Since Milnor’s seminal work, link-homotopy has
been the subject of numerous works in knot theory see e.g. [6, 17, 24, 8], but also more generally in
the study of codimension 2 embeddings (and in particular knotted surfaces in dimension 4) [20, 3, 2]
and link-maps (self-immersed spheres) [4, 14, 15, 25]. In this paper we are interested in the study of
link-homotopy for braids and links.

The homotopy braid group has been studied by many authors. In [6] Goldsmith gives an example
of a non-trivial braid up to isotopy that is trivial up to link-homotopy; she also gives a presentation of
the homotopy braid group. A representation of the homotopy braid group is given by Humphries in
[13]. He uses it to show that the homotopy braid group is torsion-free for less than 6 strands. Finally
the pure homotopy braid group has been studied by Habegger and Lin in [8] as an intermediate object
for the classification of links up to link-homotopy. As further developed below, our first main result
is another linear representation of the homotopy braid group (Theorem 3.23), which we prove to be
faithful (Theorem 3.31) and which is computed explicitly in Theorem 3.26.

We also address the problem initially posed by Milnor in [22], of classifying links in the 3-sphere up
to link-homotopy. Milnor himself answered the question for the 2 and 3-component case. Furthermore,
Habegger and Lin [8] proposed a complete classification, using a subtle algebraic equivalence relation
on pure braids, where two equivalent braids correspond to link-homotopic links. A more direct
algebraic approach had been proposed by Levine [17] just before the work of Habegger—Lin in the
4-component case. Our second main result is a new geometric proof of Levine’s classification of
4-component links up to link-homotopy (Theorem 4.7). This approach seems to apply, at least in
principle, to links with a higher number of components: we illustrate this in Theorem 4.10 with
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the case of algebraically-split 5-component links (that is, 5-component links with vanishing linking
numbers).

The notion of clasper was developed by Habiro in [9]. These are surfaces in 3-manifolds with some
additional structure, on which surgery operations can be performed. In [9], Habiro describes the
clasper calculus up to isotopy, which is a set of geometric operations on claspers that yield equivalent
surgery results. It is well known to experts how clasper calculus can be refined for the study of
knotted objects up to link-homotopy (see for example [5, 26]). This homotopy clasper calculus, which
we review in Section 2, will be the key tool for proving all the main results outlined above.

The rest of this paper consists of three sections.

In Section 2, we review the homotopy clasper calculus: after briefly recalling from [9] Habiro’s
clasper theory, we recall how a fundamental lemma from [5], combined with Habiro’s work, produces
a set of geometric operations on claspers having link-homotopic surgery results.

Section 3 is dedicated to the study of braids up to link-homotopy. We start by reinterpreting braids
in terms of claspers. In Section 3.1 we define comb-claspers, a family of claspers corresponding to
braid commutators. They are next used to define a normal form on homotopy braids, thus allowing
us to rewrite any braid as an ordered product of comb-claspers. In Section 3.2 after a short algebraic
interlude, we give a presentation of the pure homotopy braid group (Corollary 3.20), using the work
of [6] and [23] as well as the technology of claspers. Finally, we define and study in Section 3.3 a
representation of the homotopy braid group which is in a sense the linearization of the homotopy
Artin representation. We give its explicit computation in Theorem 3.26 (see also Example 3.28 for
the 3-strand case) and show its injectivity in Theorem 3.31. Moreover, from the injectivity of the
representation follows the uniqueness of the normal form and thus the definition of the clasp-numbers,
a collection of braid invariant up to link-homotopy. Note that our representation has lower dimension
than Humphries one. The correspondence between the two representations has not been established
yet, but we wonder if our representation could open new leads on the torsion problem for more than
six strands.

The final Section 4 focuses on the study of links up to link-homotopy. The method used is based
on the precise description of some operations, which generate the algebraic equivalence relation men-
tioned above in the classification result of Habegger and Lin [8]; we provide them with a topological
description in terms of claspers. This new point of view allows us, for a small number of components,
to describe when two braids in normal form have link-homotopic closures. We translate in terms of
clasp-number variations the action of those operations on the normal form. In this way we recover the
classification results of Milnor [22] and Levine [17] for 4 or less components (Theorem 4.7). Moreover,
we also classify 5-component algebraically-split links up to link-homotopy (Theorem 4.10).

Acknowledgement: The author thanks the referee for his/her careful reading and insightful sugges-
tions. This work is partially supported by the project AlMaRe (ANR- 19-CE40-0001-01) of the ANR.
The author thanks P. Bellingeri and J.B. Meilhan for their great advises and helpful discussions.

2. CLASPER CALCULUS UP TO LINK-HOMOTOPY

Clasper calculus has been developed by Habiro in [9] in the context of tangles up to isotopy.
Claspers turn out to be in fact a powerful tool to deal with link-homotopy. In this section we first
define claspers and their associated vocabulary. Then we describe how to handle claspers up to
link-homotopy.
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2.1. General definitions. Let M be a smooth compact and oriented 3-manifold.

Definition 2.1. An n-component tangle in M is a smooth embedding of an n-component ordered
and oriented 1-manifold (a disjoint union of circles and intervals) into M.

o We say that two tangles are isotopic if they are related by an ambient isotopy of M that fixes
the boundary.

o We say that two tangles are link-homotopic if there is a homotopy between them fixing the
boundary, and such that the distinct components remain disjoint during the deformation.

Definition 2.2. A disk T smoothly embedded in M is called a clasper for a tangle 0 if it satisfies the
following three conditions:

- T 1is the embedding of a connected thickened uni-trivalent graph with a cyclic order at each
trivalent vertex. Thickened univalent vertices are called leaves, and thickened trivalent ver-
tices, nodes.

- 0 intersects T transversely, and the intersection points are in the interior of the leaves of T'.

- Fach leaf intersects 0 in at least one point.

Diagrammatically a clasper is represented by a uni-trivalent graph corresponding to the one to be
thickened. The trivalent vertices are thickened according to Figure 1. On the univalent vertices we
specify how the corresponding leaves intersect 6, and we also indicate how the edges are twisted using
markers called twists (see Figure 1).

Y Aw ( I I N I I\_ N |
FIGURE 1. Local diagrammatic representation of claspers.

Definition 2.3. Let T be a clasper for a tangle 8. We define the degree of T' denoted deg(T) as its
number of nodes plus one, or equivalently its number of leaves minus one. The support of T denoted
supp(T') is defined to be the set of the components of 0 that intersect T

Definition 2.4. A clasper T for a tangle 0 is said to be simple if every leaf of T intersects 0 exactly
once. A leaf of a simple clasper intersecting the [-th component is called an [-leaf.

Definition 2.5. We say that a simple clasper T’ for a tangle 0 has repeats if it intersects a component
of 0 in at least two points.

Given a disjoint union of claspers F' for a tangle 6, there is a procedure called surgery detailed in
[9] to construct a new tangle denoted #*. We illustrate on the left-hand side of Figure 2 the effect of
a surgery on a clasper of degree one. Now if F' contains some claspers with degree higher than one,
we first apply the rule shown on the right-hand side of Figure 2, at each trivalent vertex: this breaks
up F into a disjoint union of degree one claspers, on which we can perform surgery.

Note that clasper surgery commutes with ambient isotopy. More precisely for ¢ an ambient isotopy
and F' a disjoint union of claspers for a tangle 8 we have that i(6F) = (i(9))"*). This is an elementary
example of clasper calculus, which refers to the set of operations on unions of a tangles with some
claspers, that allow to deform one into another with isotopic surgery result. These operations are
developed in [9], and we give in the next section the analogous calculus up to link-homotopy.



4 EMMANUEL GRAFF
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FI1GURE 2. Rules of clasper surgery.

2.2. Clasper calculus up to link-homotopy. In the whole section, T" and S denote simple claspers
for a given tangle 8. We use the notation T' ~ S, and say that T and S are link-homotopic when the
surgery results #7 and 0% are so. For example if 4 is an ambient isotopy that fixes 6, then T ~ i(T).
Moreover, if 87 is link-homotopic to 6, we say that T vanishes up to link-homotopy and we denote
T~g.

We begin by recalling a fundamental lemma from [5]; more precisely, the next result is the case
k =1 of [5, Lemma 1.2], where self Cj-equivalence corresponds to link-homotopy.

Lemma 2.6. [5, Lemma 1.2] If T has repeats then T vanishes up to link-homotopy.

It is well known to the experts that combining Lemma 2.6 with the proofs of Habiro’s technical
results on clasper calculus [9], yields the following link-homotopy clasper calculus.!

Proposition 2.7. [9, Proposition 3.23, 4.4, 4.5 and 4.6] We have the following link-homotopy equiv-
alences (illustrated in Figure 3).
(1) If S is a parallel copy of T which differs from T only by one twist (positive or negative), then
SuT ~ .
(2) If T and S have two adjacent leaves and if T' U S’ is obtained fr(zm TuS by exchanging these
leaves as depicted in (2) from Figure 3, then T U S ~T" v S" UT, where T is as shown in the

figure.
(3) If T' is obtained from T by a crossing change with a strand of the tangle 6 as depicted in (3)

from Figure 3, then T ~T' 0T, where T is as shown in the figure.
(4) If T" U S" is obtained from T U S by a crossing change between one edge of T and one of S as
depicted in (4) from Figure 3, then T U S ~T' U 8" U T, where T is as shown in the figure.
(5) If T' is obtained from T by a crossing change between two edges of T then T ~ T".

0| T 6| S’
L 0
~ o [ X i S
(1) L\ @ v.la\ / (3)

FI1GURE 3. Basic clasper moves up to link-homotopy.

T S

IThose moves are contained in [26] and [21] together with [5].
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Idea of proof. The result of [9] used here are up to Ck-equivalence, that is, up to claspers of degree up
to k. The key observation is that, by construction, all such higher degree claspers have same support
as the initial ones, hence they are claspers with repeats. Lemma 2.6 then allows to delete them up to
link-homotopy. (|

Remark 2.8. Lemma 2.6 combined with Proposition 2.7 gives us some further results:

- First, statement (4) implies that if |[supp(T") m supp(S)| = 1 then we can realize crossing
changes between the edges of T and S.

- Moreover, if |supp(T') nsupp(S)| = 2 thanks to statement (2) we can also exchange the leaves
of T and S.

- Furthermore, statement (3) allows crossing changes between T and a component of 0 in the
support of T

Indeed, in each case the clasper T involved in the corresponding statement has repeats and can thus
be deleted up to link-homotopy.

The next remark describes how to handle twists up to link-homotopy.

Remark 2.9. We have the following link-homotopy equivalences (illustrated in Figure /).

(6) If TV is obtained from T by moving a twist across a node then T ~ T'.
(7) If T and T" are identical outside a neighborhood of a node, and if in this neighborhood T and
T' are as depicted in (7) from Figure 4, then T ~ T".

_—
T ~ T T ~ T’
(6) (7)

FIGURE 4. How to deal with twist up to link-homotopy.

Remark 2.10. Remark 2.9 allows us to bring all the twists on a same edge and then cancel them
pairwise. Therefore we can consider only claspers with one or no twist.

Proposition 2.7 together with Remark 2.9 give us most of the necessary tools to understand clasper
calculus up to link-homotopy. The missing ingredient is the relation IHX which we give in the following
proposition.

Proposition 2.11. [9] Let Ty, Ty, Tx be three parallel copies of a given simple clasper that coincide
everywhere outside a 3-ball, where they are as shown in Figure 5. Then Tr v Ty v Tx ~ &. We say
that Ty, Ty and Tx verify the IHX relation.

T[ TH TX

FIGURE 5. The IHX relation for claspers.
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3. BRAIDS UP TO LINK-HOMOTOPY.

This section is dedicated to braids up to link-homotopy. Our main result is a representation of
the homotopy braid group, defined and studied using clasper calculus. In the next two subsections
we introduce the main tools for this result: first the notion of comb-claspers for braids, that yields a
normal form result up to link-homotopy, and next their algebraic counterpart with the family F.

3.1. Braids and comb-claspers. Let D be the unit disk with n fixed points {p;};<n, on a diameter

9, and I the unit interval [0, 1]. Set also I3, ..., I, n copies of I, and | | I; their disjoint union.
i<n
Definition 3.1. An n-component braid 8 = (51, ..., Bn) is a smooth proper embedding
(Bis - Ba) i | > D x1
<n
such that 8;(0) = (pi, 0) and Bi(1) = (pr()(), 1) with 7(B) some permutation of {1, ..., n} associated

to . We also require the embedding to be monotonic, which means that B;(t) € D x {t} for any
t € [0, 1]. We call (the image of) B; the i-th component of 8. We say that a braid is pure if its
associated permutation is the identity.

We emphasize that the braids are here oriented from top to bottom.

The set of braids up to ambient isotopy, resp. link-homotopy, equipped with the stacking operation
forms a group: the braid group denoted by B,, resp. the homotopy braid group, denoted by B,,.
Elements of B, are called homotopy braids. The set of pure braids up to isotopy, resp. link-homotopy,
forms a subgroup of B, resp. B,, denoted by P,, resp. P,. Note that we do not require isotopy or
link-homotopy to preserve the monotonic property during the deformation.

Remark 3.2. Braids are tangles without closed components, and with boundary and monotonic con-
ditions. But any (pure) tangle without closed components is link-homotopic to a (pure) braid (in the
pure case, such tangles are called string links in the literature). Thus, when regarding braids up to
link-homotopy we can freely consider them as tangles, i.e. we can forget the monotonic condition.
This is useful from the clasper point of view since clasper surgery does not respect this condition in
general.

We introduce next comb-claspers and their associated notation. Consider the usual representative
1 of the trivial n-component braid given by 1; = {p;} x [ for i € {1, ..., n}. Denote by (D x I)* and
(D x I)~ the two half-cylinders determined by the plane ¢ x I, where § is the fixed diameter on D.
In figures, we choose (D x I)* to be above the plane of the projection.

Definition 3.3. We call comb-clasper a simple clasper without repeats for the trivial braid such that:
- Every edge is in (D x I)".
- The minimal path running from the smallest to the largest component of the support meets all
nodes.
- At each node, the edge that does not belong to the minimal path leaves “to the left” as locally
depicted in Figure 6.

An example is given in Figure 7.
The second condition of Definition 3.3 implies that every node is related (by an edge and a leaf)

to a component of 1 that is not the smallest or the largest of the support. Using that, we can order
the support of a comb-clasper: we start with the smallest component, then we order the components
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Minimal

/ path

=== FEdge to
the left

FIGURE 6. Local orientation at each node of a comb-clasper.

according to the order in which we meet them along the minimal path, and finally, we end with the
largest one. For example in Figure 7 the ordered support is {1, 2, 6, 4, 5, 8}.

Once the ordered support {i1, i2, ..., i;} is fixed, the only remaining indeterminacy in a comb-
clasper is the embedding of the edges in (D x I)*. This depends on the relative position of the edges,
and on the number of twists on each of them. However, up to link-homotopy the relative position of
the edges is irrelevant (by move (5) from Proposition 2.7). Besides, by Remark 2.10, we can always
suppose that a comb-clasper contains either one or no twist; moreover by Remark 2.9 we can freely
assume that the potential twist is located on the edge connected to the i;-th component. We can thus
unambiguously (up to link-homotopy) denote by (i1,i2, - - - ,i;) the comb-clasper with such a twist and
by (i1,i2,- -+ ,i;) ! the untwisted one; we call them respectively twisted and untwisted comb-claspers.
For example the twisted comb-clasper (126458) is illustrated in Figure 7.

FIGURE 7. The twisted comb-clasper (126458).

In what follows we blur the distinction between comb-claspers and the result of their surgery up
to link-homotopy. From this point of view a comb-clasper is a pure homotopy braid and the product
(a)(e) of two comb-claspers is the product 1(®1(2)  In particular according to move (1) from
Proposition 2.7 the inverse of a comb-clasper («) is given by (a)~?.

Definition 3.4. We say that a pure homotopy braid 3 € P, given by a product of comb-claspers
5= (00)* (022 () s
o stacked if (a;) = (o) for some i < j implies that (o;) = (o) for any i < k < j,
o reduced if it contains no redundant pair i.e. two consecutive factors are not the inverse of
each other.
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If B is reduced and stacked we can then rewrite § = [ [(cw)"* for some integers v; and with (o;) # ()
for any © # j. Moreover, given an order on the set of twisted comb-claspers, we say that a reduced
and stacked writing is a normal form of 5 for this order if (o;) < (o) for all i < j.

We stress that the notion of normal form is relative to a given order on the set of twisted comb-
claspers. The following example will be relevant for Section 4.
Example 3.5. Given two twisted comb-claspers () = (i1 --+4;) and (/) = (i} ---14},) we can choose
the order (o) < (') defined by:
e max(supp(«)) < max(supp(a’)), or
e max(supp(«)) = max(supp(a’)) and deg(a) < deg('), or
e max(supp(a)) = max(supp(a’)) and deg(a) = deg(a’) and iy ... 1 <iex 7} ... 19,
where <jex denotes the lexicographic order. With respect to this order the normal form of an element
B € Py is given by 12 integers {v12, ..., vi324} as follows:
B = (12)¥12(13)"13(23)"13 (123)"123 (14)"14(24) 21 (34) 34 (124)124 (134) V134 (234) 231 (1234) 1234 (1324) 1924
The next result is shown by the same arguments as for Theorem 4.3 of [26].2

Theorem 3.6. [26, Theorem 4.3] Any pure homotopy braid € P, can be expressed in a normal
form, for any order on the set of twisted comb-claspers.

3.2. Algebraic counterpart.
3.2.1. Reduced group and commutators. For any a,b in a group we denote [a,b] := aba~'b~!.

Definition 3.7. Let G be a group generated by {x1, ..., x,}. We define Jo < G to be the normal
subgroup generated by elements of the form [z;, \x; A7, for allie {1, ..., n}, and for all \ e G. We
call reduced quotient, the quotient G/Jg and we denote it by RG. This definition depends on the
choice of the generators {x1, ..., xz,}.

In what follows we work essentially with the free group F}, on n generators =1, ..., x,. The reduced
quotient RF,, = F,/J of the free group is called reduced free group, where J := Jp .

Definition 3.8. A commutator in zy, ..., x, of weight k& (k = 1) is an element of F,, defined
recursively, as follows:
e The commutators of weight one are x1, ..., Tn.
e The commutators of weight k are words [C1,Co] where C1, Co are commutators verifying
k = wg(C1) + wg(C2) where wg(C') denotes the weight of C.

Definition 3.9. We denote Occ;(C) = r and we say that x; occurs r times in a commutator C if
one of the following holds:

e IfC=uxj, thenr =14fi=7andr =0 ifi#j.
o If C =[C1,Cq], then r = Occ;(Ch) + Occi(Co).
We say that a commutator C has repeats if Occ;(C) > 1 for some i. We call support of the commu-
tator C, the set of indices i such that Occ;(C) > 0 and we denote it supp(C).
The following is a reformulation of Definition 3.7 that is used throughout the paper.

Proposition 3.10. [17, Proposition 3] The subgroup J is generated by commutators in x1, ..., Tp
with repeats. Hence these commutators are trivial in the reduced free group.

2Although a different notion of comb-clasper is used in [26], the strategy of proof is strictly the same.
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The notion of basic commutators was first introduced in [11] and was further studied in [18, 10, 19]
to describe the lower central series of the free group. It was then naturally adapted in [17] to the
framework of the reduced free group. In the next definition we set a well chosen family of commutators.
This family will replace reduced basic commutators from [17] and will follow us throughout the whole

paper.
Definition 3.11. Let us define the following family of commutators without repeats in RF},:

F = {[il, ey il] | 11 < g, 2<k<l}l<n'
Here, we use the notation [i1,i2,--- , 4] == [[- - [[Ti, Tin)sTis )]s - -+ 224y, |sx4,]. This is a finite set and
we can thus choose an arbitrary order on it, F = {[au], [a2], ..., [am]}-

Example 3.12. For two commutators [a] = [i1---4;] and [o/] = [i} ---i}] we can choose the order
given by [a] <[] if:

o wg(a) < wg(a'), or

o wg(o) = wg() and i1 ...%9 <jex ] ... 1.
With respect to this order the normal form of an element w € RF3 = {x1, x2, x3) is given by 8 integers
{e1, ..., es} as follows:

w = [1]°1[2]°2[3]°*[12]° [13]° [23]°0[123]7 [132]%.

The following theorem is a kind of reduced analogue of Hall’s basis theorem [10, Theorem 11.2.4].
It is to be compared with [17, Proposition 6], where a different family of commutators is used, see
Remark 3.15.

Theorem 3.13. For any word w € REF,, there exists a unique ordered set of integers {e1, ..., em}
associated to the ordered family of commutators F = {[a1], [az], ..., [am]} such that

w =[] aa]? -+ - v ]

Proof. We first show for w € RF,, the existence of a decomposition w = [ [ . r[a]°. We recall that
two commutators commute up to commutators of strictly higher weight, and any commutator of
weight strictly bigger than n has repeats and is then trivial according to Proposition 3.10. Thus it is
sufficient to express any commutator C as a product of commutators in F. To do so we use the three
following relations in RF,.

() [X, Y] = [V, X]=[X"1Y]=[X,Y '] with X,Y commutators.

(i) [X,[V.Z]] = [[X,Y],Z] - [[X,Z],Y]~! with X,Y,Z commutators.

(iii) [UV,X] = [U,X][V,X] with U,V commutators such that supp(U) n supp(V) # .
Relation (i) allows us to move the generator z;; with i; = min(supp(C)) at the desired position;
we obtain C = [-+-[z;,,C1],+ -+ ,Cx]*!. Relations (i) and (ii) are used to decrease the weight of the
commutator C; in this expression. We start with C; = [C,C%] supposing its weight is bigger than
one, and we get:

C

iy, [C1,C5]), -+ O]

[211,C11,C5] - [, C5),C11 7, -+ Gl

[2i,C11,C5), -+ \Crl ™' [+ [[3,,C5),C11 7 -+ LGl
[2i,,C11,C5], -+ O [+ [0y, C5).C1 ], - -+ .CR] T

Since wg(C1) < wg(C) and wg(C%) < wg(C) we know that by iterating this operation on the new
terms we can rewrite C' as a product of commutators of the form [- - - [z;,,2i,],C2], - - - ,Ck]. We finish
by repeating the process on Cs, ..., Cy.
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To prove the unicity of the decomposition we work with the unit group U, of the ring of power
series in non-commuting variables X1, ..., X,. More precisely we consider its quotient U, in which
the monomials X = X, Xa, - - - X, vanish when they have repetition (i.e. a; = o for some i # j).
The elements m U, are of the form 1 + Q with Q a sum of monomials of degree higher than one,
and (14+Q) ! =14+Q with Q = —Q + Q> — Q3+ ---(—=1)"Q". Now we can define the reduced
Magnus expansion M. This is a homomorphism from the reduced free group RF, to U,, defined by
M (xz;) = 1+ X;. The following computation shows that M respects the relations of the reduced free
group, meaning that M ([z;, Az;A~1]) = 1 for any generator z; and any A in REF),:

M Q@A™ M (i) = (M) + X)M (™)) (1 + X))

(1+
=14+ X; + MO\ X;M(A™Y
= (1+ X)) (M) + X))
= M(z)) MMz h).
An easy induction on the weight [ of [«] € F gives the following:

Claim 3.14. For every [a] = |ag, -,
a sum of monomials of degree | = wg(
i€ {l, ..., l} appears exactly once.

ale F, M([a]) = 1+ X+ Q(Xay, - , Xa,) where Qq is
[a]) not starting by Xa,, and where each variable X, for

Now, we take w = [ [ crlo]® = [].e f[a]efl two decompositions of an element w € RF,,. We prove
by induction on the weight of [«] that e, = €/, for any commutator [«a] € F. Suppose that e, = €,
for any [a] of weight < k and compare the coefficients of monomial X in both M (][ cr[c]°) and
M([ e }-[oz]efx) for a fixed commutator |« of degree k. According to Claim 3.14, commutators of
weight > k do not contribute to this coefficient and the only contributing weight k& commutator is [«/]
itself with coefficient ey, resp. el,. Commutators of weight < k may also contribute to this coefficient
but the induction hypothesis ensures that the contribution is the same in both expressions. This
proves that e, = €/, for any [«] of weight k and concludes the proof. O

Remark 3.15. Unlike Levine’s proof of [17, Proposition 6|, this proof does not require Hall’s basis
theorem [10, Theorem 11.2.4].

Definition 3.16. To the ordered set of commutators F = {[au1], ..., [am]} in RF, we associate a
Z-module V formally generated by {aa, ..., ap}. We also define the linearization map ¢ : RF, =V
by:

ow) =era1 + -+ + emam where [a1]® -+ [am]“™ is the normal form of w.

We keep calling “commutators” the generators of V and we define the support and the weight of « to
be those of [a].

We stress that the normal form and the linearization map ¢ both depend on the ordering on F.

Lemma 3.17. The Z-module V is of rank,

k= 3 2

o<i<k<n i
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Moreover we can decompose V into a direct sum of submodules V; generated by the commutators of
weight ©. Then we obtain that:

k!
rk(V) = Y ——.
i i<hen (K@it 1)l

Proof. The first equality comes by counting the cardinality of F. To do so we first count the elements

[a] with first term a; = k. To choose ag, a3, ..., a; with 0 <1 < n — k we only have to respect the
condition that a; < ;. Thus they can be freely chosen in {k + 1, ..., n} and therefore:
n n—k n—1 k n—1 k
k=11=0 k=01= 0 =01= 0
For the second equality, we follow the same kind of reasoning, but this time a; = k& must be chosen
in {1, ..., n — ¢+ 1}, then we choose the ¢ — 1 last numbers ao, ..., o; without restriction in
{k+1, ..., n}. We obtain:
n—i+1 n—1
(n—k)! k!
Tk(Vi) = Z X = 2 . :
—— | — |
= (n—k—i+1)! Mt (k—1+1)!
O
3.2.2. Braid groups. In this section we use the usual Artin braid generators o; for i e {1, ..., n—1}

illustrated in Figure 8 and the usual pure braid generators A;; = oj_10j_2--- O'Z‘+10'i2(7i_+11 e Jj_fzaj_fl

for 1 €14 < j < n illustrated in Figure 9.

1 7 7+1 n 1 ) J n
N | 1.
. .. ... ] l DY
N\ =
FicURE 8. The Artin genera- F1GURE 9. The pure braid gen-
tor o;. erator A;;.

The following theorem is based on the result of [6].

Theorem 3.18. Let J <1 B,, denote the normal subgroup generated by all elements of the form
[Aij AA A~ 11 where X\ belongs to P,,. We obtain the homotopy braid group B,, as the quotient:

By = B,/J.

Proof. In [6], the homotopy braid group B, appears as the quotient B,,/.J’, where J’<1B,, is the normal
subgroup generated by elements of the form [Aij,)\Aij)\_l] where A belongs to the normal subgroup
generated by {41, ..., Aj_1;}. Our result relies on the observation that J = J’. Obviously J' < J
thus we only need to show that J < J’. This is equivalent to showing that for any A € P,, A;; and
AA; ;A=Y commute up to link-homotopy. Let us remind that A;; is the surgery result 109 of the
comb-clasper (ij). Thus the conjugate AA;; A~ is the surgery result of the clasper C' = ¢(i5), where ¢
is the ambient isotopy sending AA~! to the trivial braid 1. Now it is clear that supp(C) = supp(ij),
hence according to Remark 2.8, (ij)C ~ C(ij) and the result is proved. O

In order to obtain a similar result for the pure homotopy braid group we need the following.
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Lemma 3.19. The subgroup J< B, normally generated in B,, by elements of the form [A;j, AAijA 1]
for A€ P, seen as a subgroup of P,,, coincides with the normal subgroup of P, generated by elements
of the form [Ai; \AijA 1] for A€ P,.

Proof. For ke {1, ..., n—1}, 1 <i < j<nand X € P, we compute:
[Ais1j, M A7) 1] ifi=kandj#k+1
[Aiv1j, 2401575 ] if j =k
on[Aij MigA ot = {0 Apgg [Aim1j, A3 40155 ]A,;,Hl ifi=k+1
A1 Aij-1,M A1) ]AI:kH ifi#kand j=k+1
[Aij AAiAT] otherwise,

with \; € P, for i € {1 2, 3, 4}. Therefore the conjugates o[ Aij, NAGA™ ]ak_1 are always conjugates
of [Ayjy N Apyy(N)™!] in P, for some 1 <4’ < j' <n and X € P, and the proof is done. O

Corollary 3.20. Let J<1 P, be the normal subgroup generated by elements of the form [Aij,)\Aij)\*l]
for any \ € P,. We obtain the pure homotopy braid group P, as the following quotient:

P, =P,/J =RP,.

This induces the following presentation for P,:

[A,s,A4:5] =1 r<s<i<jorr<i<j<s
P oA [Ars, Aril = [Arj,Asjl = [Asj, Ars] r<s<gj
TN A, Asg] = [[Aig,Ar LAl r<s<i<j
[Aij A A2 7] =1 i<jand\e P,

Proof. The quotient statement is a direct consequence of Proposition 3.18 and Lemma 3.19. The
presentation is obtained from that of [23 Theorem 3.8] re-expressed in terms of commutator and
using the relation [ATS,A ] [ATS,AU]’ which holds in B,. O

We next recall two classical representations of braid groups that are known to be faithful (see [1]
and [8] for more details).

Definition 3.21. We call Artin representation the homomorphism p : B, — Aut(F,) defined as
follows:

T = X4,
p(oi) 1§ Tiy1 55';_115'31'931'+1a
Tk = I ifk¢{i, i+1}.

Similarly the homomorphism p : B, — Aut(RE,) defined by the same expressions is called the
homotopic Artin representation.

3.3. A linear faithful representation of the homotopy braid group.

3.3.1. Algebraic definition. Let GL(V) be the general linear group of the Z-module V introduced
in Definition 3.16. In order to define the linear representation v : B, — GL(V), we state the
following preparatory lemma. Let us denote by N; the subgroup normally generated by z; in RE,
for j € {1, ..., n}; note that NN; is an abelian group.

Lemma 3.22. Let B € B, be a homotopy braid. For any commutator C € Nj, if the product
[a1]®t -+ [am]®™ is a normal form of p(B)(C) then we have that e; = 0 if [oi] ¢ Ny-1(gy;). Here
7Y(B)(j) is the image of j under the permutation induced by 1.
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In other words in the image by p(5) of C' € Nj;, Tr—1(g)(j) occurs in each factor of the normal form.

7)
Proof. The proof comes from the fact that any element of N; is sent by 5(3) to an element of Nr-18)(5)-
This is clear for the Artin generators o; and so it is for any braid 5. Thus we conclude using the fact
that the normal form w = C' --- C&m of any element w € Ny, for any k contains only commutators
in Ng. To see this we use the homomorphism of RF;, defined by x; — 1 which sends the normal form
of w to 1. g

Recall from Definition 3.16 the linearization map ¢ : RF,, — V.

Theorem 3.23. The map
v: B, — GL(V)
defined for B € B, and [a] € F by v(B)(a) = ¢op(B)([a]) is a well defined homomorphism. Moreover

~ does not depend on the chosen order on F.

Proof. Since ¢ is not a homomorphism in general, it is not clear that v is a representation. Yet we
do have that v(85") = v(8)y(8’) for any two homotopy braids § and f’. Let [a] be a commutator in
F and « its corresponding commutator in V. We choose some j € supp(|a]) so that [a] is in N;. Set
v(B8) () = 3 eicy; for some commutators ¢ € V associated to the commutators [a;] € F and some
integers e;. Then we have that

AWB(@) = 6o sAENeD) = 00 #A([ [lod) = o[ [2A10])").

Now, using Lemma 3.22 we know that [a;] is in V. T 1(8)() for any i. Besides, Lemma 3.22 implies
that any commutator in the normal form of 5(3)([;]) is in the abelian group Ny-1(gg;y for any i.
But note that for Cy, ..., Ck a collection of commutators in F such that [C;,C;] = 1 for any i, j we
have that ¢(C; ---Ck) = ¢(C1) + - - - + ¢(Ck). Hence ¢ behaves like a homomorphism on the product

[ p(P)([ai])*; and finally,

o(ITodr) = Ve (#68)(D) = Near(Ble = 1) Leten) = 13174 o).

i
This shows that « is a well defined homomorphism. .
To prove the independence on the chosen order on F we use Lemma 3.22 again. For any 8 € B,
and any [a] € F, all the commutators in the normal form of 5(3)([a]) commute with each other. In

particular if we set two orderings {[a1], ..., [an]} and {[ag)], ..., [@o@m)]} on F then the two
associated normal forms

p(B)([a]) = [ar]® -+ [am]™ = [ap(1)]® -+ [ag(m] o™

satisfy e; = €} for any i and therefore ¢ o p = ¢’ o p for the two linearization maps ¢ and ¢’ associated
to the orderings. O

Remark 3.24. The homomorphism v is in fact injective. Since ¢ is clearly injective, this can be
shown using the injectivity of p, proved in [8]. However we will give below another proof of this result
in Theorem 3.31 using clasper calculus, which in turn reproves the injectivity of p. Furthermore our
approach by clasper calculus allows for explicit computations of the representation, as shown in the
next section.
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3.3.2. Clasper interpretation. We first give a topological interpretation of the Artin, resp. homotopy
Artin, representation. We can see the free group F,, resp. reduced free group RF,, on which By,
resp. B,, acts as the fundamental group, resp. the reduced fundamental group, of the complement
of the n-component trivial braid. Therefore an element of F),, resp. RF,, can also be seen as the
homotopy, resp. the reduced homotopy?, class of an (n + 1)-th component in this complement. On
the diagram, we place this new strand to the right of the braid and we label it by “c0”. Thus, the
generators x; of F,, (resp RF,) are given by the pure braids A;, shown in Figure 10, which can
be reinterpreted with the comb-claspers (i,00) depicted in the same figure. There and in subsequent
figures, we simply represent with a circled “o0” the leaf intersecting the co-th component.

1 2 i nll TIL jo 1 2 1 nll 7|1
a1 i z, = (i,00)
[ Il

FiGURE 10. Pure braid and clasper interpretations of the generator x;.

In this context the image p(8) of an element 3 € By, resp. B, is given on a generator z; € F,,, resp.
RE,, by considering the conjugation 8131 illustrated in Figure 11. Then we apply an isotopy,

1 1 n 1 1 n
| | - |
(8) |
p
=
/81
v v v * * ‘

FiGUrE 11. Clasper interpretation of the Artin representation.

transforming 418~! into 1. By doing so the clasper (4,00) is deformed into a new clasper which we
are able to reinterpret as an element of F,, or RF,. More precisely in the link-homotopic case we
have a nice correspondence between the family F and the comb-claspers with oo in their support, by
the following proposition.

Proposition 3.25. Let (a) = (i1 ip,—100) and (') = (i1 -+ in_1i,00) be two comb-claspers. Then

we have the relation:
(') ~ [(@),(in%0)] = (@) - (ino0) - (@) " - (ino0) .
For example in Figure 12 we illustrate the equivalence (125400) ~ [(12500),(400)].
Proof. Consider the product of comb-claspers a - (i,00) - o=t - (i,00)~! (as for example on the right-
hand side of Figure 12). First we use move (2) from Proposition 2.7 to exchange the co-th leaves of
(i,00) and (a)~!; this move creates an extra comb-clasper, which is exactly (o). Now by Remark

2.8 we can freely move (/) and finish exchanging the edges of (a,,00) and (a)~!, thus obtaining the
product (a) - (a)7! - (a) - (i,0) - (i,00)~! ~ (o). O

3Here by reduced homotopy class, we mean the image in the reduced quotient of the homotopy class of an element.
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1 2 3 4 5 1 2 3

#
"
_I .
b

- M ‘\‘K

\e

I @
T C

F1GURE 12. The comb-clasper (12540) is link-homotopic to the commutator [(12500),(400)].

:

By iterating this proposition we obtain a correspondence between the commutators [a] € F (or a €
V) and the comb-claspers («,00). For example the equivalence (125400) ~ [[[(100),(200)],(500)],(40)]
corresponds to [1254] = [[[z1,22],25],24] in RE,.

In this way, we obtain an explicit procedure to compute our representation ~ using clasper calculus,
as follows. As illustrated in the proof of Theorem 3.26 below, the computation of v(3)(«) with v the
representation, 8 € B,, and o € V, goes in 3 steps:

Step 1: Consider the conjugate of the comb-clasper («,00) by the braid 3.

Step 2: Use clasper calculus to re-express this conjugate as an ordered union of comb-claspers with
oo in their support (the order comes from the order on F).

Step 3: The number of parallel copies of a given comb-clasper in this product is the coefficient of
the associated commutator in v(5)(«).

We apply in Theorem 3.26 this procedure®* for each generator o; € B,, and each commutator in V. The

image of commutator (i1,io, - i) := ¢([i1,i2, -+ ,i;]) € V by the map (o;) depends on the position
of the indices ¢ and 7 4+ 1 in the sequence i1, 2, ..., 1.
Theorem 3.26. For suitable sequences I, J, K in {1, ..., n}\{i, i + 1}, I # &, we have:
(1) — () (a)
(J,i,K) - (Jji+ 1K) (b)
(1 + 1K) = (4,K) + (4,0 + 1,K) (c)
o) i+ 1K) o (LiK)+ (Lii+1L,K)— (Ii+1,i,K) (d)
(LiJi+1,K) — (Li+1,J4,K) (e)
(Li+1,J0,K) — (LiJi+ 1,K) (f)
[ (i + LK) o Y, (DTG + LK) (9)

where in (g), the sum is over all (possibly empty) subsequences J' of J, and J' denotes the sequence
obtained from J' by reversing the order of its elements, see Example 3.27.

Example 3.27. If J = (J1, J2, J3) and K = & in (g), then v(o;) maps (i,J,i + 1) to :
—(1,0 + 1,J1,J2,J3) + (i,J1,i + 1,J2,J3) + (3,J2,i + 1,J1,J3) + (4,J3,0 + 1,J1,.J2)
—(i,JQ,Jl,i + 1,J3) — (i,Jg,Jl,’i + I,JQ) — (i,Jg,JQ,i + 1,J1) + (i,J3,J2,J1,i + 1).
The proof below explains how this follows from the IHX relations of Figure 17.

A program that computes explicitly the representation -~y is available on [7].
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Proof of Theorem 3.26. Following the procedure given above, we consider the conjugate o, Y(a,00)0;
and apply clasper calculus to turn it into a union of comb-claspers.

For (a) it is clear that (I,00) commutes with o;, passing over or next to it. The computation of (b)
is given by a simple isotopy of the braid shown in Figure 13.

1 941 (RS

A e | G

FIGURE 13. Computation of (b).
The proofs of (¢) and (d) are similar and are given in Figures 14 and 15 respectively. There, the

first equivalence is an isotopy, and the second one is given by move (2) from Proposition 2.7. For (d)
there is a further step given by an I H X relation.

|
'&@NU——‘&-C)N
)

1 341 1 41 1
\] gL_‘x,_;L (i,i+1) | | oo)
(i+1,K,00) (4,K,00)
| | ( N | | (¢ H—l K ,00)
Qb (¢,0+1)
I [T

Ficure 14. Computation of (¢).

i\}—l i i—IH i 141 f i—ll—l
- | , (1i,K,00)
\ Qg (ii+1) &_<i (I,,oo) L —

S | . ..
__i([,zj_._lcé(,oo)r\/ ol ._.(I’Q’K’OO) ~ | ~ P (Lisit+1,K,00)
T~ o~ e

. &
e [ Lt

®

FIGURE 15. Computation of (d).

For (e) and (f) we apply the same isotopy as Figure 13 on components i and i+1, thus interchanging
(1,i,Ji+ 1,K) and (I,i + 1,J,i,K). Note that we also need a crossing change between the (i + 1)-th
component and a clasper edge, which is possible according to Remark 2.8.

Proving (g) is the last and hardest part and goes in two steps. The first step is illustrated in Figure
16: we proceed as before with an isotopy and a crossing change, then we use move (7) of Remark 2.9.
This turns o;(¢,.J,i + 1,K,00)0, 1into a new clasper which is not a comb-clasper.

In the second step, we use the IHX relations repeatedly to turn this new clasper into a product of
comb-claspers. This is illustrated in Figure 17 where J = (J;,J2,J3). We conclude by simplifying the
twists with Remark 2.10. (]
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1 1 441 1 441

Lo [ L
S I e

!

FIGURE 16. Turning o;(i,J,i + 1,K,oo)0i_1 into a new clasper.

7 1

_.|_

Jo
Js
Z+1 J1 i+1 J1
i E J2J3 I, Jo
: : Jo Js Jo H_:l :Jl J3 J3Z+:1 :Jl Jo Js Ja : : 1
¥ N 1% N ¥ N ¥ N

i+1 i o Js Jii+l Ly Li+l S Jy SJii+lds Jyi+l Lo J3Jvi+l S Ji3 i+l i+l Jsh Jy

LD LI

FIGURE 17. Iterated IHX relations.

Example 3.28. We illustrate Theorem 3.26 on the 3-component homotopy braid group Bs. To do so,
we set (1), (2), (3), (12), (13), (23), (123), (132) to be the generators of V, with the order of Example
3.12, and we compute v on the Artin generators o1, oa:

Y(o1)(1) = (2), v(o2)(1) = (1),

Y(o1)(2) = (1) + (12), v(02)(2) = (3),

Y(o1)(3) = (3), Y(02)(3) = (2) + (23),

v(o1)(12) = —(12), v(02)(12) = (13),

v(o1)(13) = (23), Y(o2)(13) = (12) + (123) — (132),
v(01)(23) = (13) + (123), v(02)(23) = —(23),

v(01)(123) = —(123), v(02)(123) = (132),
v(01)(132) = —(123) + (132), ~(02)(132) = (123).
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That gives us the following matrices:

010 0 00 0 0 1000 0 0 00
100 0 00 0 0 0010 0 0 00
001 0 00 0 0 0100 0 0 00
010 100 0 0 0000 1 0 00
M=fo00 0 01 0 of M=loo001 0 0 00
000 0 10 0 0 0010 0 —100
000 0 01 -1 -1 0000 1 0 01
000 0 00 0 1 0000 1 0 10

The global shape of these matrices was predicted by Theorem 3.26. Indeed in general we have the
following.

Proposition 3.29. For 8 € B, a homotopy braid, the matriz associated to ~v(B) in the basis F,
endowed with the order of Example 3.12, is given by a lower triangular block matrix of the following
form:

Big 0 .- 0
Bs1 Bap -+ 0
Bn,l Bn,2 T Bn,n

where B, ; is a finite order matriz of size rk(V;) = Z?:ll ﬁ which is the identity when B is pure.
Moreover By corresponds to the left action by permutation k — 7=1(8)(k), and Bas corresponds to
the left action on the set {(k, j)}r<; given by:

(k, ) H{ (x=H(B)(K), 7 (B)(5)) if = H(B) (k) <7~ H(B)(4),
’ —(7H(B) (), =1 (B)(k)) if 7 H(B)(5) <7 H(B)(K).

Proof. The triangular shape is a direct consequence of Theorem 3.26. Indeed, the chosen order
respects the weight, and Theorem 3.26 shows that v maps a commutator of weight k& to a sum of
commutators of weight at least k. Proposition 3.17 gives the size of the square diagonal blocks B; ;.
The fact that these diagonal blocks are the identity when § is a pure braid may need some more
explanations. We only need to show this result on the generators § = A; ; = 1(9) . By Proposition
2.7, conjugating (a,00) by (4,7) may only create a clasper (o/,00) of strictly higher degree. This shows
that v(8)(a) = («) + (strictly higher weight commutators) so that B;; is the identity. The block
matrix By 1 describes the action on degree one comb-claspers modulo claspers of higher degree: the
claim follows on an easy verification on the generators ¢;. Similarly the claim on the block matrix
B2 amounts to focusing on degree two comb-claspers. O

In order to prove the injectivity of v we need the following preparatory lemma.
Lemma 3.30. Let (i1, -- ,i;) be a comb-clasper. We have
’7(1(“77“))(“) = (Zl) - (ib Tt 7il)7
where, on the right-hand side, (i1,--- ,i;) now denotes the corresponding commutator in V.

Proof. Consider the product (iy,- -+ ,i;)(i;,00) (i1, - - ,i;) " and re-express it with only comb-claspers
with oo in their support. To do so, as illustrated in Figure 18, we apply move (2) from Proposition
2.7 on the leaves on the 4;-th component, which introduces the comb-clasper (i1, - - - ,i;,00) ™!, and we
simplify (i1,--- ,il) and (i1,--- ,il)_l. O
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1 i1 il n 1 il il n

FIGURE 18. Proof of Lemma 3.30.

We can now state the injectivity of the representation ~.
Theorem 3.31. The representation v : B,, — GL(V) is injective.

Proof. Let € B,, be such that ~v(B) = Id. First, Proposition 3.29 imposes that § is a pure braid;
indeed the block Bj; must be the identity, which means that the permutation 7(3) is trivial.
According to Theorem 3.6 we can consider a normal form for 5:

B =]

Let I < {1, ..., n} be a sequence of indices with largest index m. Let also V; be the subspace of
V spanned by commutators with support included in I. We can then define the associated projection
pr YV — Vi, and its composition with the restriction of v on V;, denoted by ~; := pr o Vv, - Note

that it corresponds to keeping only the components with index in I. It is clear using Proposition
2.7 that v(P,)(V\Vr) € V\Vy, thus for p1, B2 € P, we have that v7(8182) = vr(81)7:(52). Moreover
v1(1(®)) = Id for any comb-clasper () with supp(a) ¢ I. Hence v7(8) = v7(8') for 8 defined by:

g= 1 @
supp(a)cT

Now we show by strong induction on the degree of («) that v, = 0. For the base case we consider
I of the form I = {i, m}. Using Lemma 3.30 we obtain:

y1(B')(m) = 1 (1™ ) (m),
= (m) — Vim - (im).
Because ( € Ker(), we have that v7(8)(m) = (m), and this implies that v, = 0 for any («) of degree
one. To prove that v, = 0 for any («) of degree k we take I of length k + 1 and using the induction
hypothesis, we get then:
g= [ @~

supp(a)=1
Thus thanks to Lemma 3.30 we finally obtain:

w(B)m)=(m)— >, va-(a).
supp(a)=1

Because 5 € Ker(y) we have that v7(8)(m) = (m), and this implies v, = 0 for any («) of support I.
Repeating the argument for any I < {1, ..., n} of length k + 1, we get that v, = 0 for any («) of
degree k, which concludes the proof. ]
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Corollary 3.32. The normal form is unique in B, i.e. if B = [[(a)" = [](a)’= are two normal
forms of B for a given order on the set of twisted comb-claspers, then v, = V., for any («).

Proof. The proof follows closely the previous one. As before for a given I < {1, ..., n} we have
v1(B) = ~v1(B’) for B defined by :

g = H (@) = H ()

supp(a)cl supp(a)cl

We show again by strong induction on the degree that v, = v/,. The base case is strictly similar,
but for the inductive step one cannot in general write 3’ with only comb-claspers with support I.
However by Proposition 2.7 a comb-clasper (a)) with supp(a) = I commutes with any comb-clasper
(o) up to comb-claspers with support not included in I. Hence v7(1(*) commutes with ~;(1(*)) for

any two comb-claspers (o’) and («) such that supp(«) = I. In particular we get:

yi@BYm) =y | J] (@ )ow| ] (@) ](m)

supp(a)S1 supp(a)=1

=y [[ @ )eu| [I () }(m).

supp(a)S1 supp(a)=1I

Since comb-claspers () with supp(a) € I have degree < k—1 where k is the length of I, by induction
hypothesis we can simplify the first factor in each expression. By Lemma 3.30 we compute the second

term thus obtaining;:
(M= > va(@=(m— > vh-(a),
supp(a)=1 supp(a)=I
and the proof is complete. O

Remark 3.33. Corollary 3.32 shows that the numbers v, of parallel copies of each comb-clasper in a
normal form are a complete invariant of pure braids up to link-homotopy. We call those numbers the
clasp-numbers. Other well known complete homotopy braid invariants are the Milnor numbers [8].
As a matter of fact, Milnor numbers can be used, using the techniques of [26], to give another proof
of Corollary 3.82. In this paper we will not try to make explicit the relation between clasp-numbers
and Milnor numbers, since we work solely with clasp-numbers.

4. LINKS UP TO LINK-HOMOTOPY

In the following of the paper we will focus on the study of links up to link-homotopy. More
precisely we will describe in terms of clasp-numbers variation when two normal forms have link-
homotopic closures.

The main purpose of this section is to use clasp-numbers, defined in Remark 3.33 above, to provide
an explicit classification of links up to link-homotopy. In this way we recover results of Milnor [22]
and Levine [17] for 4 or less components, and extend them partially for 5 components. To do so we
first revisit in terms of claspers the work of Habegger and Lin [8].

Remark 4.1. Kotorii and Mizusawa also considered in [16] the question of using clasper theory to
classify 4-component links up to link-homotopy. They use a different kind of normal form, arranged
along a tetrahedron shape, adapted to the 4-component case. The main difference with the present
work, however, is that their result makes direct use of Levine’s classification. Here we instead reprove
the latter using Theorem 4.4 and clasper calculus. Our approach is likely to extend to the general
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case: as an illustration of this fact, we treat the algebraically-split 5-component case at the end of this
section.

4.1. Habegger—Lin’s work revisited. There is a procedure on braids called closure, that turns a
braid into a link in S3. The question is to determine when two braids have link-homotopic closures. Let
us first recall from [8, Theorem 1.7 & Corollary 1.11] that for any integer n we have the decomposition:

pn:pn—llxRFn—l

where the first term corresponds to the braid obtained by omitting a given component, and the second
term is the class of this component as an element of the reduced fundamental group of the disk with
n — 1 punctures.

To answer the question, Habegger and Lin in [8] study an action of ]52n on Pn_l X RF),_1, which leads
them to considering certain elementary operations (Z;,Z; )k, (2i,2;)k and (Z;,2;)x, whose definition we
recall here in terms of claspers.

Definition 4.2. Let 8 € P, be a pure homotopy braid, and let i, k be two distinct integers in
{1, ..., n}.
o (%,%)1(B) is the pure homotopy braid B - 1™ where A and (ik)~1 are degree one claspers
as shown in the left-hand side of Figure 19.
o (zi,4)1(B) is the pure homotopy braid 10%) . & where A' and (ik) ' are degree one claspers
as shown in the central part of Figure 19.
o (&,2:)k(B) is the pure homotopy braid 1003 . 1M " where (ik) and (ik)™' are degree one
claspers as shown in the right-hand side of Figure 19.

1 i k n 1 i k n 1 7 k n
| H./sla.A” (.Z%)‘ ! : |(1A) ! !
T i
3 \ A
|
di by l b l (i) o<l l
| | ] + ] ] + ! i

FIGURE 19. The elementary operations (Z;,Z; )k, (zi,zi)k, and (Z;,z; ).

Remark 4.3. In fact, in [8] those operations are only defined for k = n, but the definitions extend
naturally for any k # i. Moreover, Figure 2.8 in [8] does not correspond exactly to Figure 19,
due to convention choices. Firstly, in [8] braids are oriented from bottom to top whereas we orient
them from top to bottom. Secondly, here the basepoint of the second term in the decomposition
P, = P,_1 x RE,_1 is taken above the n — 1 punctures, and not under the n — 1 punctures as in [8].

We state now the main classification theorem of links up to link-homotopy.

Theorem 4.4. [8, 12| Let 3, B’ € P, be two pure homotopy braids. The closures of 5 andNB’ are
link-homotopic, if and only if there exists a sequence 3 = g, 81, ..., Bn = B’ of elements of P, such
that Bjy1 = (€;,%3)k(B;) for some i # k in {1, ..., n}.

Proof. Firstly, [8, Lemma 2.11] and the proof of [8, Theorem 2.13] imply that two pure homotopy
braids whose closures are link-homotopic are related by a sequence of operations (Z;,; )k, (x;,2;)x and
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(Z4,x;). Moreover, computations in [8, pp. 413] show that operations (z;,Z;); generate operations
(x4,x;)g. Finally, Hughes in [12] showed that operations (&;,z;); are also realized by operations
(.fz,.fz)k [

4.2. Link-homotopy classification of links with a small number of components. This section
is dedicated to the explicit classification of links up to link-homotopy. The starting point of the
strategy is Theorem 4.4 which allows us to see links up to link-homotopy as pure homotopy braids up
to operations (Z;,Z; ), with @ # k in {1, ..., n}. Moreover with Corollary 3.32 we show that a braid
is uniquely determined by its normal form, encoded by a sequence of integers: the clasp-numbers.
The goal is then to determine how the normal form, or equivalently the clasp-numbers, vary under
operations (;,7;)r. By using clasper calculus, we recover in this way the link-homotopy classification
results from Milnor [22] and Levine [17] in the case of links with at most 4 components. We then
apply these techniques to the 5-component algebraically-split case.

In order to use Corollary 3.32, we need to fix an order on the set of twisted comb-claspers. In the
rest of the paper we fix the following order, which is inspired from Example 3.12. For two twisted
comb-claspers (a) = (i1 ---4;) and (') = (i} ---1},) we set (o) < () if:

e deg(a) < deg(c'), or
o deg(a) = deg() and i1 ... % <jex ) ... 17}
This order is used implicitly throughout the rest of the paper.

4.2.1. The 3-component case. Let L be a 3-component link, then L can be seen as the closure of a
3-component string link 5. As mentioned in Remark 3.2, up to link-homotopy, string links correspond
to pure braids. Thus 8 can be seen as the closure of the normal form:

(12)V12 (13)’/13 (23)1/23 (123)’/123’

for some integers v19, V13, V23 and vyo3. See the left-hand side of Figure 20.

1 2 3
A |
1 2 3 I
&L . LL T T, W — L
® | |
I | Vis Y D U
Vi3 () D L] . I |
— ] oy (&5 ] T\ ¢y
Vo LIJ oD LI) Vas I e I
23 A\ %
| | gy S R o7
b

q

e

, |
12) 122 LD
(12) Y

FIGURE 20. Operation (22,72); on the 3-component normal form.

We now investigate how these numbers vary under operations (z;,%;)x for i # k € {1, 2, 3}; we
apply for example (72,42)1. By Definition 4.2 this corresponds to introducing the claspers A and
(12)~! as shown in the right-hand side of Figure 20, which we then put in normal form. This is done
by sliding the 1-leaf of A along the first component to obtain (12) and simplify it with (12)~!. By
move (2) from Proposition 2.7, this sliding creates new claspers, but by Lemma 2.6, the only claspers
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that do not vanish up to link-homotopy, are those created when A crosses the leaves of (13)"!3: more
precisely, in this process, v13 copies of {1, 2, 3}-supported claspers appear. Finally, according to
Remark 2.8 we can rearrange these new claspers and the normal form becomes

(12)V12 (13)V13 (23)V23 (123)”123+V13‘

The other operations (Z;,Z;); act in a similar way, by changing 123 by a multiple of v19, V13 or vas.
Summarizing we have shown that

V12, V13, V23 and v123 mod ged(vig, 113, v23),

form a set of complete invariants for 3-component links up to link-homotopy.
Note that we recover here Milnor invariants fiy5, 713, flo3 and fi;93, that we already knew to be
complete link-homotopy invariants for 3-component links (see [22]).

4.2.2. The 4-component case. Before proceeding with the link-homotopy classification of 4-component
links, we need the following technical result.

Lemma 4.5. Let C be a union of simple claspers for the trivial n-component braid 1, and let | €
{1, ..., n}. Let T be a clasper in C' with | in its support and let Cp; = | JT' be the union of all
claspers in C such that supp(T’) n supp(T') = {l}. Suppose that an l-leaf f of T is disjoint from a
3-ball B containing all l-leaves of Cr;. Then the closure of 1€ is link-homotopic to the closure of 1€
where C' is obtained from C by passing f across the ball B as shown in Figure 21.

Proof. First the result is clear if T' has several [-leaves, since by Lemma 2.6, T vanishes up to link-
homotopy. By Remark 2.8 the edges of any clasper in C7; can freely cross those of 7' but f and the
l-leaves of claspers in C7; cannot be freely exchanged. However according to Remark 2.8 again, the
leaf f can be freely exchanged with any I-leaf of claspers in C\Cr, since their supports contain at
least some k # [ which is in supp(7’). By using the closure we can thus slide f in the other direction,

using the closure of 1, and bypass the I-leaves of claspers in C7; all gathered in B. U
[ [
B L "!% B L ‘—l%
.. Cry . e / Cr

FI1GURE 21. Illustration of Lemma 4.5

Although the assumption of Lemma 4.5 may seem restrictive, it turns out to be naturally satisfied
for normal forms. For instance, we have the following consequence.

Proposition 4.6. Let C = (ay)"* -+ ()™ be the normal form of a pure homotopy n-component
braid and let () be a degree n—2 comb-clasper. Then C and C' = (o)™ - -+ (@) ()i () 7L+ -+ ()™
have link-homotopic closures, for any i€ {1, ..., m}.
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Proof. We first consider the product (a)”*--- ()" (a)(a) -+ (am)’™ where we just insert the
trivial term (a)(a) ! in C. We next want to exchange («) and («;)*. This is allowed if [supp(a) N
supp(a;)| = 2 by Remark 2.8, but if supp(a) n supp(e;) = {I} we can only realize crossing changes
between the edges of () and (a;)"i (see Remark 2.8). However in that case («;) is a comb-clasper of
support {k, [} with k& the only component not in the support of (), thus we can apply Lemma 4.5 to

the l-leaf of («), and bypass the block (a;)" (corresponding to C7; in Lemma 4.5). O
2 3 4
V12 (I) $ ll)
Vi3 "I" I 5% )
V4 LI) I I $ (&5 )
Va3 LI) D LL
oy cl) I N U
Vs | LI) aD LI)
I 3
V23 "l\ ‘& @/
I ‘
V124 \ Ll\ ——‘69/
I
V134 L\ | ‘& ———Q/
I I
V234 "l)\ K @/
I
V1234 \ "l\ ‘& _4‘6/
I I

FIGURE 22. Normal form for 4 components.

Let us now return to the classification of links up to link-homotopy and let L be a 4-component
link seen as the closure of the normal form:

(12)12(13)713 (14)¥14(23) 23 (24)24 (34) V34 (1237123 (124) V124 (134) 134 (234) 234 (1234) 1234 (1324) V1324

for some integers vig, V13, V14, V23, V24, V34, V123, V124, V134, V234, V1234, and viga4. See Figure 22.
We can apply Proposition 4.6 to the degree 2 comb-claspers (123), (124), (134) and (234). For
example, applying Proposition 4.6 to (o) = (234) and («;) = (12), we get that L is link-homotopic
to the closure of:
(234)(12)12(234) 1 (13)713 (14)¥14(23)723 (24)24 (34) 34 (123) V123
(124)124 (134)¥134 (234)V254 (1234) 1234 (1324) V1524
By clasper calculus (Proposition 2.7 and Remark 2.8), we have (234)(12)*12(234) =% ~ (12)*12(1234)"12.

The product of claspers (1234)"12 can be freely homotoped by Remark 2.8, thus producing the normal
form

(12)V12 (13)1/13 (14)1’14 (23)V23 (24)1/24 (34)1/34 (123)V123 (124)1/124 (134)1’134 (234)V234 (1234)”1234‘“’12 (1324)1’13247
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whose closure is link-homotopic to L. This is recorded in the first row of Table 1, which records
all possible transformations on clasp-numbers obtained with Proposition 4.6. Each row represents a
possible transformation where the entry in the column v,, represents the variation of the clasp-number
Vo. Note that an empty cell means that the corresponding clasp-number remains unchanged. Note
also that, we only need two columns because for the comb-claspers of degree 1 or 2 the associated
clasp-numbers remain unchanged.

V12
V34
V13
V24
V14 -V14
V23 -123

TABLE 1. Some clasp-numbers variation with same closures.

Let us now describe how operations (z;,7;); for ¢ # k in {1, ..., 4} affect clasp-numbers. As for
the 3-component case, (;,%;); corresponds to sliding the i-leaf of a simple clasper of support {7, j}
(denoted A in Definition 4.2) along the i-th component. Along the way A encounters leaves and edges
of other claspers, that can be crossed as described by moves (2) and (/) of Proposition 2.7. In doing
so, claspers of degree 2 and 3 may appear, that we must reposition in the normal form. Those of
degree 3 commute with any clasper by Remark 2.8, but since they may not be comb-claspers we have
to use IHX relations (Proposition 2.11) to turn them into comb-claspers. Claspers of degree 2 can be
repositioned using Remark 2.8 and Lemma 4.5 (the fact that Lemma 4.5 applies is clear according to
the shape of the normal form, where factors are stacked).

We detail as an example operation (74,74)2. In that case A has support {2, 4} and we slide its
2-leaf along the 2nd component. According to Remark 2.8, A can freely cross the edges of claspers
with 4 in their support and the 2-leaves of claspers containing 2 and 4 in their support. Thus we
only consider the claspers that appear when A meets the edges of (13)"!3 and the 2-leaves of (12)"12,
(23)¥23 and (123)"123. Once repositioned we obtain in order the factors (1324)"13, (124)*12, (234)7"23
and (1324)7"123. However according to Table 1, (1324)'3 can be removed up to link-homotopy and
thus we get the following normal form:

(12)1112 (13)1/13 (14)V14 (23)1/23 (24)1124 (34)1/34 (123)1/123 (124)V124+1/12
(134)1/134 (234)1/234—1/23 (1234)V1234 (1324)1/1324—1/123 .

In the same way, we compute all operations (#;,7;); and record them in Table 2. The entry in row
(Z;,%; )k represents the corresponding operation. As in Table 1, an empty cell means that (z;,7;); does
not change the clasp-number. Moreover the v;; columns are omitted because they remain unchanged
by any operations.

There are however algebraic redundancies in Table 2, i.e. some lines are combinations of other
lines, which means that some operation (Z;,%;); generate the others. So we can keep only these ones
(or their opposite), which we call “generating” operations, and which we record in Table 3.

Finally, with Table 3 we reinterpret the homotopy classification of 4-component links as follows.
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’ H V123 ‘ V124 ‘ V134 ‘ V234 ‘ V1234 ‘ V1324 ‘

(T2,%2)1 || 13 V14 V134

(73,73)1 || —V12 V14 V124
(4,74 )1 —Vig | —V13 —V123 | V123
(1,21)2 || —vo3 | =124 —1234
(73,23)2 | V12 V24 Vg4 | —V124
(24,74)2 V12 —123 —123
(€1,21)3 || vo3 —V34 V234
(72,72)3 || —113 —U34 | —V134 | V134
(74,74)3 V13 | 123 | Vi3

(1,271)4 Vo4 | V34 Vo34 | —V234
(T2,72)4 —V14 V34 —V134
(73,73)4 —V14 | —Vog | —Vi4

TABLE 2. Clasp-numbers variations under operations (&;,%; ).

| vi23 | vioa | visa | vosa | vi23a [ visod |

V13 V14 V134
—V12 V14 V124
V23 V24 V234
—V12 123 V123
V23 —U34 V234
V13 V23 V123
V14 —V34 V134
V14 V24 V124

TABLE 3. Clasp-numbers variations under generating operations.

Theorem 4.7. Two 4-component links, seen as closures of braids in normal forms (see Figure 22),
are link-homotopic if and only if their clasp-numbers are related by a sequence of transformations
from Table 3.

Remark 4.8. Table 1 was only used here as a tool to simplify the computations summarized in Table
2. We stress that Table 3 alone suffices to generate Table 1 and Table 2. In particular, Table 1 is
obtained by “commuting” the rows of Table 3. More precisely let us denote by [R;]x the variation
associated to the i-th row of Table k. Let us also denote by [R;,R;] the “commutator of rows i and
37 from Table k, i.e. the variation obtained by applying the i-th row of Table k, then the j-th, then
the opposite of the i-th and finally the opposite of the j-th. Thus, Table 8 generates the rows of Table
1 as follows:

[R1]1 = [Re,Rals,  [R2]1 = [R1,Rs]3,  [Rs] = [Re,Rr]s,

[Ra]1 = [Rs,Ra]3,  [Rs]i = [Re,Ru]s,  [Rel = [R5,R6]s.

Note that Levine in [17] already proved a similar result. The purpose of this paragraph is to
explain the correspondence between the two approaches. The strategy adopted in [17] consists in
fixing the first three components and let the fourth one carry the information of the link-homotopy
indeterminacy. Levine used four integers k, [, v, d to describe a normal form for the first three
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components, and integers e; with i € {1, ..., 8} to describe the information of the last component.
Finally in [17, Table3] he gives a list of all possible transformations on e;-numbers that do not change
the link-homotopy class. Fixing the last component corresponds in our setting to fixing the clasp-
number vy93: this is why [17, Table 3] has one less column than Tables 2 and 3. Moreover the five
rows of [17, Table 3| correspond to (553,:53)1_1,(:54,;54)2_1,(17_1,:1:_1)4, (@3,%3)4 and (21,21)5 € o (73,23)7% ©
(as_g,ac_g)l_b, respectively, and Levine’s integers correspond to clasp-numbers as follows.

k r { d e1 | ea | e3 | es es €6 e7 es

Vig | V13 | V23 | V123 | V14 | V24 | V34 | V124 | V134 | V234 | —V1324 | —V1234

4.2.3. The 5-component algebraically-split case. This section is dedicated to the study of 5-components
algebraically-split links. These are links such that the linking number is zero for any pair of compo-
nents. Equivalently, algebraically-split links are given by the closure of a normal form with trivial
clasp-numbers for any degree one comb-clasper.

The following proposition is the algebraically-split version of Proposition 4.6. The proof is essen-
tially same and is left to the reader.

Proposition 4.9. Let C' = (a1)"* -« (a)"™ be a normal form of a pure homotopy n-component
braid with v; = 0 for any («;) of degree one, and let (o) be a degree n — 3 comb-clasper. Then C and
C' = (a1)" - () ()i (a) 7L -+ - (aun)V™ have link-homotopic closures, for any i€ {1, ..., m}.

Now, let L be a 5-component algebraically-split link seen as the closure of the normal form:
C' =(123)"123(124)"124(125)125(134)"134(135)"135 (145)145 (234) V234 (235) 235 (245) 245 (345) 345 (1234 ) V1234
(1235)”1235 (1245)1’1245 (1324)”1324 (1325)”1325 (1345)1’1345 (1425)”1425 (1435)”1435 (2345)1’2345 (2435)”2435
(12345)¥12345(12435)"12435(13245) 713245 (13425) 713425 (14235) V14235 (14325) V14325,

The strategy is similar to the 4-component case. We see links as braid closures, and with Theorem
3.32 we know that any braid is uniquely determined by a set of clasp-numbers {v,}. In this case, the
algebraically-split condition results in the vanishing of clasp-numbers v;; (i.e. v, = 0 for all (a) of
degree 1). Now, as mentioned by Theorem 4.4, the classification of links up to link-homotopy reduces
to determining how operations (Z;,z;)x for i # k in {1, ..., 5} affect the clasp-numbers.

We first use Proposition 4.9 to simplify the upcoming computations. In that case Proposition 4.9
concerns degree 2 comb-claspers (123), (124), (125), (134), (135), (145), (234), (235), (245) and (345).
We record in Table 4 all possible transformations on clasp-numbers obtained with Proposition 4.9.
As before, each row represents a possible transformation, where the entry in the column v, represents
the variation of the clasp-number v,, and an empty cell means that the corresponding clasp-number
remains unchanged. Note also that we only need columns corresponding to degree 4 comb-claspers
because the other clasp-numbers remain unchanged.

Finally, we compute the effect of all operations (&;,7;); using Definition 4.2 and Table 4, and
simplify the results keeping only the “generating” operations, as in the 4-component case. We record
the corresponding clasp-number variations in Table 5. As for the 4-component case, Table 5 contains
all the data for the classification of 5-component algebraically-split links. In other words we obtain
the following classification result.

Theorem 4.10. Two 5-component algebraically-split links, seen as closures of braids in normal forms,
are link-homotopic if and only if their clasp-numbers are related by a sequence of transformations from

Table 5.



28

EMMANUEL GRAFF

| V12345 | V12435 | V13245 | V13425 | V14235 | V14305 |
V123

V123

V124

V125

V124
—Ul125

V125 —l125
V134

V135

V134

—UV135
V135 —V135
V145

—lV145

V234

V145 —UV145
—1234 —1234 V234
V234 —l234 V234 —1234

V235

V235
V245

V345

V245

V345

TABLE 4. Some clasp-numbers variations witl

h same closure.

[R1]4 = [Ri2,R3]5 o | R5,Rs]5,

Remark 4.11. Just as in Remark 4.8, only Table 5 is needed here as it generates Table 4. With the
same notations as in Remark 4.8 and with the additional notation “o” for composition, we get:
[Ro]s = [Re,Rs]5, [Rsls = [Ri1,R12]5, [Ra]s = [Re,R14]s,
[R5]s = [R5,R11]5 0 [R3,R11]5,  [Rela = [R3,Ru1l5,  [Rrla = [Ra2,Ras]s,  [Rsla = [Rs,Rols,
[Ro]s = [R1,R5]5, [Rio]a = [R13,R5]5, [Ri1]a = [R2,R1]5, [Ri2]a = [Ra3,Ru4]s,
[R13]a = [Re,R4]s, [Ria]a = [R7,Ro]5, [Risla = [R5,R10]5, [Riela = [Rr,R3]s5,
[Ri7]a = [Ra,R2]s, [Ris]a = [Ri0,R11]5, [Riola = [R1,R7]s5,

[Ra20]4 = [Ri0,R1]s5.
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